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PREFACE TO SECOND EDITION

I was pleased to learn that MSRI and Cambridge University Press have decided
to issue a second edition of this book. The first edition sold out its press run
rather quickly, and for the last several years I have had regular inquiries from
colleagues and students about where to obtain a copy.

The first edition was successful because it filled a need: there was nothing
available at the time which even remotely covered the subject satisfactorily. Even
now, while there are many more references available for this and related subjects,
there is no other comprehensive treatment of the topics covered in this book, and
so the second edition will (I hope) still fill an important need. Some of the newer
references I can recommend to the reader are: [Fillmore 1996] and [Murphy 1990]
as general references for C∗-algebras, including some K-theory; [Davidson 1996]
for a deep study of examples of important C∗-algebras, including many treated
superficially in my book; [Wegge-Olsen 1993] for a leisurely treatment of basic
K-theory in more detail than we have included here; [Higson 1990] for a detailed
survey of KK-theory and its applications, written primarily for nonspecialists in
operator algebras; [Rosenberg 1994] for an excellent treatment of algebraic K-
theory; [Loday 1992] for cyclic homology/cohomology; and, of course, [Connes
1994] (which was already partially available at the time of the first edition)—its
introduction gives a marvelous overview of the subject, and the book contains
a vast supply of important applications. Several more books on operator K-
theory and related subjects are forthcoming. There is also a compilation of all
Mathematical Reviews on K-theory from 1940 to 1985 [Magurn 1985], and even
a K-theory preprint archive on the web (www.math.uiuc.edu/K-theory/).

Time and mathematics have marched on since the book was completed, and
the treatment of the book is somewhat out of date in many areas and badly out of
date in a few. Despite my overly optimistic statement in the original preface that
“it appears the basic theory has more or less reached a final form,” the subject
has continued to evolve. Even before the book was published, important new
approaches and results of Cuntz and Skandalis made some sections somewhat
obsolete. Since then, such advances as the E-theory of Connes and Higson have
become core material for the subject. Profound new applications ofK-theory and
its generalizations, both within operator algebras (for example, the classification
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programs of Elliott et al. and of Kirchberg) and in topology and geometry (see
[Connes 1994]) have attracted much attention.

In preparing the second edition, I had to make the most important decision
right at the outset: how extensively to revise the book. If I were writing a book
now from scratch, it would be very different from the first edition, taking into
account both the evolution of the subject itself and of my understanding of it.
I basically had three options:

(1) Extensively rewrite almost every section.
(2) Do a minimal revision, correcting errors, updating references, and adding a

few comments here and there about the most important developments.
(3) Do something in between, rewriting some parts but leaving the essence of

the manuscript intact.

I immediately rejected option (3): I was unlikely to be completely satisfied with
the outcome, and if I was going to do that much work I should really do the job
right and choose option (1). Option (1) was seriously considered, but ultimately
rejected, partly because I did not feel I had the time or energy to do it properly,
and partly because I think there are others far more qualified than I (some of
whom are seriously considering a book of their own which I very much hope to
see.) So option (2) was chosen. I felt that even though the treatment in the
book might no longer be optimal, it could be relatively easily updated into a
reference still of value. I have corrected those errors, gaps, and obscurities I
was aware of, both typographical and mathematical (although I certainly would
not be willing to assert that the book is now error-free!) I have also updated
references, and added new comments and references where needed. I have tried
to mention the most important new developments, usually in brief comments or
exercises/problems; the reader should not infer that subjects treated only briefly
here are not worthy of expanded coverage.

The one major addition to the book is a new section (§ 25) on E-theory. I
felt that no contemporary book on K-theory would be complete without this
topic, and it warranted more than a brief treatment since there is at present no
other adequate reference. A few other additions of essential topics are scattered
throughout the book.

I have taken care not to change the numbering of any section, paragraph, or
result, in order not to make references ambiguous. The only exceptions to this
are Theorem 11.4.2 and problem 16.4.8, which were erroneously numbered 11.4.1
and 16.4.7 respectively in the first edition. All added material has numbers not
used in the first edition. This policy has occasionally led to new material being
inserted in a less than optimal location, but I believe the advantages of the policy
outweigh the disadvantages.

I am grateful to all those who have given or sent me comments or corrections
to the first edition. Colleagues who have made substantive comments include
P. Baum, J. Cuntz, E. Kirchberg, A. Kumjian, L. Lehmann, N. C. Phillips,
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M. Rørdam, J. Rosenberg, and C. Schochet. Unfortunately, recollection of the
source of some of the comments has been lost in time, and I apologize to anyone
I missed in this list.

The first edition was produced with what was then a state-of-the-art word
processing system, unix troff with eqn, and I received compliments on the ap-
pearance. Today the printing looks crude. I am grateful to Silvio Levy of MSRI
who spent a great deal of time converting the troff files to TEX and making the
book look good by current standards.





PREFACE TO FIRST EDITION

K-Theory has revolutionized the study of operator algebras in the last few years.
As the primary component of the subject of “noncommutative topology,” K-
theory has opened vast new vistas within the structure theory of C∗-algebras, as
well as leading to profound and unexpected applications of operator algebras to
problems in geometry and topology. As a result, many topologists and operator
algebraists have feverishly begun trying to learn each others’ subjects, and it
appears certain that these two branches of mathematics have become deeply
and permanently intertwined.

Despite the fact that the whole subject is only about a decade old, operator K-
theory has now reached a state of relative stability. While there will undoubtedly
be many more revolutionary developments and applications in the future, it
appears the basic theory has more or less reached a “final form.” But because
of the newness of the theory, there has so far been no comprehensive treatment
of the subject.

It is the ambitious goal of these notes to fill this gap. We will develop the
K-theory of Banach algebras, the theory of extensions of C∗-algebras, and the
operator K-theory of Kasparov from scratch to its most advanced aspects. We
will not treat applications in detail; however, we will outline the most striking
of the applications to date in a section at the end, as well as mentioning others
at suitable points in the text.

There is little in these notes which is new. They represent mainly a consolida-
tion and integration of previous work. I have borrowed freely from the ideas and
writings of others, and I hope I have been sufficiently conscientious in acknowl-
edging the sources of my presentation within the text and in the notes at the
end of sections. There are some places where I have presented new arguments
or points of view to (hopefully) make the exposition cleaner or more complete.

These notes are an expanded and refined version of the lecture notes from
a course I gave at the Mathematisches Institut, Universität Tübingen, West
Germany, while on sabbatical leave during the 1982-83 academic year. I taught
the course in an effort to learn the material of the later sections. I am grateful to
the participants in the course, who provided an enthusiastic and critical audience:
A. Kumjian, B. Kümmerer, M. Mathieu, R. Nagel, W. Schröder, J. Vazquez, M.
Wolff, and L. Zsido; and to all the others in Tübingen who made my stay pleasant
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and worthwhile. I am also grateful to the Alexander von Humboldt-Stiftung for
their financial support through a Forschungsstipendium.

I have benefited greatly from numerous lectures and discussions at the Math-
ematical Sciences Research Institute, Berkeley, during the 1984–85 academic
year. I am particularly indebted to P. Baum, L. Brown, A. Connes, J. Cuntz,
R. Douglas, N. Higson, J. Kaminker, C. Phillips, M. Rieffel, J. Rosenberg, and
C. Schochet for sharing their knowledge and insights.

In addition, I want to thank J. Cuntz, P. Julg, G. Kasparov, C. Phillips, M.
Rieffel, J. Roe, D. Voiculescu, and especially J. Rosenberg, for taking the time
to review a preliminary draft of the manuscript, pointing out a number of minor
(and a few major) errors, and suggesting improvements.

I am also grateful to Ed Wishart, Jana Dunn, Bill Rainey, Mark Schank, and
Ron Sheen for patiently helping me master the unix1 system and managing to
keep the UNR system operating long enough to produce the manuscript.

Since these notes are primarily written for specialists in operator algebras, we
will assume familiarity with the rudiments of the theory of Banach algebras and
C∗-algebras, such as can be found in the first part of [Dixmier 1969], [Pedersen
1979], or [Takesaki 1979]. Some of the sections, particularly later in the book,
require more detailed knowledge of certain aspects of C∗-algebra theory.

Most of the notation we use will be standard, and will be explained as needed.
Some basic notation used throughout: N, Z, Q, R, C will denote the natural
numbers, integers, and rational, real, and complex numbers respectively; Mn will
denote the n× n matrices over C; H will denote a Hilbert space, separable and
infinite-dimensional unless otherwise specified; and B(H) and K(H), or often just
B and K, will respectively denote the bounded operators and compact operators
on H. diag(x1, . . . , xn) will denote the diagonal matrix with diagonal elements
x1, . . . , xn. If A and B are C∗-algebras, A ⊗ B will always denote the minimal
(spatial) C∗-tensor product of A and B.

This work was supported in part by NSF grant no. 8120790.

1unix is a Trademark of Bell Laboratories.
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CHAPTER I

INTRODUCTION TO K-THEORY

1. Survey of Topological K-Theory

This expository section is intended only as motivation and historical perspec-
tive for the theory to be developed in these notes. See [Atiyah 1967; Karoubi
1978] for a complete development of the topological theory.
K-theory is the branch of algebraic topology concerned with the study of

vector bundles by algebraic means. Vector bundles have long been important
in geometry and topology. The first notions of K-theory were developed by
Grothendieck in his work on the Riemann–Roch theorem in algebraic geometry.
K-theory as a part of algebraic topology was begun by Atiyah and Hirzebruch
[1961].

1.1. Vector Bundles

Informally, a vector bundle over a base space X (which we will usually take to
be a compact Hausdorff space) is formed by attaching a finite-dimensional vector
space to each point of X and tying them together in an appropriate manner so
that the bundle itself is a topological space. More specifically:

Definition 1.1.1. A vector bundle over X is a topological space E, a continuous
map p : E → X, and a finite-dimensional vector space structure on each Ex =
p−1(x) compatible with the induced topology, such that E is locally trivial : for
each x ∈ X there is a neighborhood U of x such that E|U = p−1(U) is isomorphic
to a trivial bundle over U .

An isomorphism of vector bundles E and F over X is a homeomorphism from
E to F which takes Ex to Fx for each x ∈ X and which is linear on each fiber.

A trivial bundle over X is a bundle of the form X × V , where V is a fixed
finite-dimensional vector space and p is projection onto the first coordinate (the
topology is the product topology).

One can consider real vector bundles or complex vector bundles (or even quater-
nionic vector bundles), according to whether the vector spaces are real or com-
plex. We will later restrict attention to complex bundles since it is the complex
theory which generalizes to (complex) Banach algebras, but for much of the basic
theory either kind can be considered.

The local triviality implies that the dimension of the fibers is locally constant,
and hence is globally constant if X is connected (really the only interesting case).

1
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If the dimension of each fiber is n, we say the bundle is n-dimensional. A one-
dimensional bundle is sometimes called a line bundle.

Every X has at least one bundle of each dimension, namely the trivial bundle.
Many spaces have only trivial bundles.

Examples 1.1.2. (a) The simplest example of a nontrivial (real) vector bundle
is the Möbius strip, formed from [0, 1]×R by identifying (0, x) with (1,−x). It
is a vector bundle over the circle S1.
(b) Another interesting nontrivial vector bundle is the tangent bundle TS2 of
the 2-sphere S2. More generally, many vector bundles are naturally associated
to differentiable manifolds: tangent and cotangent bundles, normal bundles as-
sociated with immersions, bundles associated with foliations, etc.
(c) There is a general “clutching” construction which yields many bundles. If
X = X1∪X2, and if Ei is a bundle on Xi with E1|Y ∼= E2|Y , where Y = X1∩X2,
then E1 and E2 can be glued together over Y to give a vector bundle over X.
(Clutching can also be done more generally.) The resulting bundle depends
on which isomorphism is taken between E1|Y and E2|Y . For example, let X
be S2, X1 the upper hemisphere, X2 the lower hemisphere, and E1 and E2

trivial complex line bundles. Then Y ∼= S1, and Ei|Y is a trivial complex line
bundle. Let σn be the map which sends (z, w) ∈ E1|Y , for z ∈ S1 and w ∈ C,
to (z, znw) ∈ E2|Y . Then the bundles on S2 corresponding to the σn are all
mutually nonisomorphic, and all complex line bundles arise in this manner. σ0,
of course, gives the trivial bundle. In fact, any complex vector bundle on Sn is
formed in a similar way by clutching over the “equator”, which is an (n − 1)-
sphere.

There is an alternate way of viewing the bundle arising from σ1, which helps
motivate the algebraic reformulation of K-theory described in 1.7: identify S2

with CP1, the projective space of one-dimensional (complex) subspaces of C2,
and set V ={(x, v) ∈ CP1 × C2 : v ∈ x}. This is a subbundle of the trivial
two-dimensional bundle. It is probably the most important bundle, and is called
the Bott bundle.

It is not always easy to tell whether a given bundle is trivial. In cases (a) and (b)
above, the nontriviality can most easily be established by looking at the sections
of the bundle. A section of a bundle E over X is a continuous function s : X → E

with s(x) ∈ Ex for each x, i.e. a continuous choice of a vector in each fiber. A
trivial bundle has many globally nonvanishing sections, for example the constant
sections. Neither the Möbius strip nor the tangent bundle to S2 has a globally
nonvanishing section. (For a tangent bundle, a section corresponds to a vector
field on the manifold. It is well known that S2 has no globally nonvanishing
vector fields.) We will denote the set of all sections of E by Γ(E).

It must be emphasized that we are considering vector bundles as topologi-
cal objects only. In case (b) above, the bundles have a natural differentiable
structure, and it is this differentiable structure which is crucial in many of the
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applications of vector bundle theory to differential geometry and differential
topology. We will ignore the differentiable structure completely, as it is irrelevant
for K-theory. (This is actually not a serious loss, since a theorem of differential
topology [Hirsch 1976, 4.3.5] says that every topological vector bundle over a
differentiable manifold has an essentially unique differentiable structure compat-
ible with the manifold.) So for us, differentiable structures on X serve only to
give a way of constructing interesting topological vector bundles over X. (This
is not to say that differentiable structures are irrelevant for operator algebras.
On the contrary, some of the deepest and most fascinating work now being done
is the noncommutative differential geometry of Connes [1994]. There are some
close connections between this work and K-theory, which we will unfortunately
only be able to very briefly touch on in these notes.)

1.1.3. If E is a vector bundle over X, and φ : Y → X is a continuous function,
then E can be pulled back via φ to a vector bundle φ∗(E) over Y . φ∗(E) can be
defined formally as the fibered product Y ×XE = {(y, e) ∈ Y ×E | φ(y) = p(e)}.
The fiber φ∗(E)y is just Eφ(y). The pullback of a bundle is a bundle of the same
dimension, and the pullback of a trivial bundle is trivial.

1.2. Whitney Sum

There are a number of operations which can be used to combine vector bundles
over X into new ones. The most important one for our purposes is the “direct
sum” or Whitney sum. Given bundles E and F over X, the Whitney sum E⊕F
is formed by taking the fiberwise direct sum and tying the fibers together in a
way compatible with the topologies on E and F . More precisely, if p and q are
the projection maps of E and F onto X, we have

E ⊕ F = {(e, f) ∈ E × F | p(e) = q(f)}.

The sum of an n-dimensional bundle and an m-dimensional bundle is an (m +
n)-dimensional bundle, and the sum of two trivial bundles is a trivial bundle.
Whitney sums commute with pullbacks.

The Whitney sum makes the set of isomorphism classes of complex vector
bundles over X into a commutative monoid (semigroup with identity) denoted
VC(X). The trivial bundles form a submonoid isomorphic to the additive monoid
of nonnegative integers. The identity is the (class of the) 0-dimensional trivial
bundle. A continuous map φ : Y → X induces a homomorphism φ∗ : VC(X) →
VC(Y ) (1.1.3), so VC gives a contravariant functor from topological spaces to
abelian monoids. Similarly, the real vector bundles give a monoid VR(X).

One can also form tensor products and exterior powers of bundles. These
give additional algebraic structure to V (X). Unfortunately, there is no known
way of extending this additional structure to the noncommutative case, so these
operations remain unique to topological K-theory.
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Examples 1.2.1. (a) The Whitney sum of two Möbius strips is a two-dimen-
sional trivial bundle. VR(S1) is isomorphic to {0} ∪ (N × Z2).

(b) Although TS2 is a nontrivial 2-dimensional bundle over S2, its sum with a
trivial line bundle is a trivial 3-dimensional bundle. So VR(S2) is a complicated
monoid which does not have cancellation, i.e. x+z = y+z does not imply x = y.
There are compact manifolds X (e.g. the 5-torus T5) for which VC(X) does not
have cancellation.

(c) Every complex vector bundle over S2 is a sum of line bundles, and VC(S2) ∼=
{0} ∪ (N × Z).

1.2.2. An important theorem of Swan says that if E is a vector bundle over a
compact Hausdorff space X, then there is a bundle F such that E⊕F is a trivial
bundle.

1.3. The Grothendieck Group

If H is an abelian semigroup, then there is a universal enveloping abelian
group G(H) called the Grothendieck group of H. G(H) can be constructed in a
number of ways. For example, G(H) may be defined to be the quotient of H×H
under the equivalence relation (x1, y1) ∼ (x2, y2) if and only if there is a z with
x1 + y2 + z = x2 + y1 + z. G(H) may be thought of as the group of (equivalence
classes of) formal differences of elements of H, thinking of (x, y) as x − y. The
prototype example of this construction is the construction of Z from N. G(H)
may also be defined by generators and relations, with generators {〈x〉 : x ∈ H}
and relations {〈x〉+ 〈y〉 = 〈x+ y〉 : x, y ∈ H}.

There is a canonical homomorphism from H into G(H) which sends x to
[(x+x, x)]. This homomorphism is injective if and only if H has cancellation.
G(H) has the universal property that any homomorphism from H into an abelian
group factors throughG(H). G gives a covariant functor from abelian semigroups
to abelian groups.

1.4. The K-Groups

Definition 1.4.1. If X is a compact Hausdorff space, K(X) = KC(X) is the
Grothendieck group of VC(X). KR(X) is the Grothendieck group of VR(X). So
K(X) may be thought of as the group of equivalence classes of formal differences
of vector bundles over X.
KC and KR are sometimes written KU and KO respectively (U for “unitary”,

O for “orthogonal”). KC and KR are contravariant functors from compact Haus-
dorff spaces to abelian groups.

Examples 1.4.2. (a) If X is a one-point space or [0, 1], then every bundle is
trivial; VR(X) ∼= VC(X) is the nonnegative integers, so KR(X) ∼= KC(X) ∼= Z.
The same is true for any contractible space.

(b) KR(S1) ∼= Z × Z2.

(c) KC(S2) ∼= Z2.
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1.5. Locally Compact Spaces

Before developing the fundamental exact sequence of K-theory, we must ex-
tend the definition of K(X) to locally compact Hausdorff spaces. The reason is
that the exact sequence relates the K-theory of X to that of a closed subspace
Y and the complement X \Y ; even if X is compact X \Y will not be in general.

The same definition of K(X) makes sense if X is not compact, but turns out
not to be appropriate. The correct approach is to define a relative K-group
for a compact pair (X,Y ), where X is compact and Y is a closed subspace of
X. K(X,Y ) may be defined to be the Grothendieck group of the semigroup
consisting of triples (E,F, α), where E and F are vector bundles over X whose
restrictions to Y are isomorphic and α is a fixed isomorphism from E|Y to F |Y ;
(E,F, α) and (E′, F ′, α′) are identified if E ∼= E′ and F ∼= F ′ under isomorphisms
whose restrictions to Y intertwine α and α′. (E,F, α) is also identified with
(E ⊕ G, F ⊕ G, α ⊕ id). (The semigroup operation is coordinatewise Whitney
sum.) We then define K(X) = K(X+,+) for X locally compact, where X+ is
the one-point compactification of X and + is the point at infinity. It is easy
to see that this definition agrees with the previous one if X is compact. We
extend the definition of the relative group K(X,Y ) to the locally compact case
by K(X,Y ) = K(X+, Y +). We may also define KR(X,Y ) and KR(X) in the
same manner.
KC and KR then give functors from the category of locally compact Haus-

dorff spaces and proper maps to abelian groups. It is usually better to think
of the functors as being defined on the equivalent category of pointed compact
Hausdorff spaces.

Proposition 1.5.1. If X is locally compact , Y is a closed subspace, and U =
X \ Y , then the map q from X+ to U+ which is the identity on U and which
sends X+ \ U to the point at infinity induces an isomorphism between K(X,Y )
and K(U). So the sequence

K(U)
q∗−→ K(X) i∗−→ K(Y )

is exact in the middle (i .e. ker i∗ = im q∗.) An analogous statement is true for
KR .

1.6. Exact Sequences

It is not true that q∗ is injective and i∗ surjective in general. However, this
exact sequence can be put into a longer exact sequence. The extension uses
higher K-groups defined by suspension:

Definition 1.6.1. If X is locally compact, the (reduced) suspension SX of X
is defined to be X × R.

The unreduced suspension of a compact space X is the quotient of X × [0, 1]
obtained by collapsing X × {0} and X × {1} to single points. The reduced
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suspension is the analogous construction in the category of pointed spaces: form
the unreduced suspension of X+, collapse {+} × [0, 1] to a single point, and use
this as base point.

One can also suspend a map, so suspension gives a functor from the category
of locally compact spaces (or pointed compact spaces) to itself.

Definition 1.6.2. Set K0(X) = K(X), K−n(X) = K(SnX) = K(X × Rn)
for n > 0. Similarly, set K−nR (X) = KR(SnX). [The use of negative indices is
a convention intended to exhibit K-theory as a cohomology theory. Because of
Bott periodicity it is irrelevant in complex K-theory, but is necessary for real
K-theory.]

The situation of 1.5.1 yields a short exact sequence K−n(U) → K−n(X) →
K−n(Y ) for each n, and similarly for K−nR .

We now come to the two fundamental results of K-theory:

Theorem 1.6.3 (Long Exact Sequence of K-Theory). Let X be locally
compact , Y a closed subspace, U = X \ Y . Then there is a natural connect-
ing homomorphism ∂ : K−n(Y ) → K−n+1(U) which makes the following long
sequence exact :

· · · ∂−→ K−n(U)
q∗−→ K−n(X) ι∗−→ K−n(Y ) ∂−→ K−n+1(U)

q∗−→ · · · ι
∗
−→ K0(Y )

and similarly for KR .

Theorem 1.6.4 (Bott Periodicity). There is a natural isomorphism between
K(X) and K−2(X), hence between K−n(X) and K−n−2(X). (“Natural” is in
the sense of category theory , i .e. a natural transformation between the functors
K−n and K−n−2.) So the long exact sequence of complex K-theory becomes a
cyclic 6-term exact sequence

K0(U)
q∗ - K0(X)

ι∗ - K0(Y )

K−1(Y )

∂ 6

� ι∗
K−1(X) �

q∗
K−1(U)
?
∂

Bott Periodicity is the place where complex K-theory begins to differ from real
K-theory. There is also periodicity in real K-theory, but the period is 8 (i.e.
KR(X) ∼= K−8

R (X)), so the long exact sequence of real K-theory is a cyclic
24-term exact sequence. Bott Periodicity can be understood and proved using
Clifford algebras, and the difference between the real and complex cases is re-
flected by the greater complexity of real Clifford algebras. (See [Karoubi 1978,
III.3] for an exposition of Clifford algebras and their relationship to Bott Peri-
odicity.)

The 6-term exact sequence is one of the primary tools which allow the K-
groups of standard spaces to be computed.
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Theorem 1.6.5. Real or complex K-theory is an extraordinary cohomology
theory , i .e. it is a sequence of homotopy-invariant contravariant functors from
compact spaces and compact pairs to abelian groups, with a long exact sequence
(1.6.3), and satisfying the excision and continuity axioms (but not the dimension
axiom).

See [Spanier 1966] or [Taylor 1975] for an explanation of these terms.

Theorem 1.6.6 (Chern Character). Let X be compact . Then there are
isomorphisms

χ0 : K0(X) ⊗ Q →
⊕
n even

Hn(X; Q),

χ1 : K−1(X)⊗Q →
⊕
n odd

Hn(X; Q),

where Hn(X; Q) denotes the n-th ordinary (Alexander or Čech) cohomology
group of X with coefficients in Q.

So, at least rationally, K0(X) is just the direct sum of the even cohomology
groups of X, and K−1(X) the sum of the odd ones.

1.7. Algebraic Formulation of K-Theory

We now describe a way of translating K-theory into an algebraic form which
admits a generalization to Banach algebras and, to a lesser extent, to general
rings.

1.7.1. Let E be a complex vector bundle over a compact space X. Then the set
Γ(E) of sections of E has a natural structure as a module over the ring (algebra)
C(X) of all complex-valued continuous functions on X. If E is a real vector
bundle, then Γ(E) is a module over CR(X), the ring of real-valued continuous
functions. If E is a trivial bundle of dimension n, then Γ(E) is a free module
of rank n. We have Γ(E ⊕ F ) ∼= Γ(E) ⊕ Γ(F ). So since every bundle is a
direct summand of a trivial bundle by Swan’s Theorem (1.2.2), Γ(E) is always a
projective module, a direct summand of a free module. Using the compactness
of X, the local triviality of E, and the finite-dimensionality of the fibers, it is
easy to see that the module Γ(E) is finitely generated.

Conversely, any finitely generated projective module over C(X) occurs as the
module of sections of a bundle. This can be seen most easily by identifying
projective modules with idempotents as follows.

The finitely generated projective modules over a unital ring R are exactly
the direct summands of Rn for some n. The endomorphism ring of the free
module Rn is Mn(R). If V and W are R-modules with V ⊕W ∼= Rn, then the
projection of V ⊕W onto V ⊕0 gives an idempotent in Mn(R). The idempotent
so constructed depends on the choice of W and n, and on the identification
of End(V ⊕ W ) with Mn(R); but it is not difficult to see that it is uniquely
determined by V up to similarity. (We identify x ∈ Mn(R) with diag(x, 0) ∈
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Mn+k(R).) Conversely, if e is an idempotent in Mn(R) ∼= End(Rn), then the
range of e is a finitely generated projective module.

If R = C(X), we may identify Mn(R) with the algebra C(X,Mn) of continu-
ous functions from X to Mn. If e is an idempotent in C(X,Mn), then e is a con-
tinuous function from X into the set of idempotents in Mn. We form a bundle E
by attaching the range of ex ⊆ Cn to x, i.e. E = {(x, v) ∈ X×Cn | v ∈ range ex}.
(It is a somewhat nontrivial fact that a bundle defined this way is locally trivial.)
Thus every idempotent, and hence every finitely generated projective module,
over C(X) comes from a bundle. The Bott bundle of 1.1.2(c) arises this way;
the corresponding projection in M2(C(S2)), called the Bott projection, is easily
described by identifying CP1 with the set of rank-one projections in M2.

Since E and F are isomorphic as bundles if and only if Γ(E) ∼= Γ(F ) as mod-
ules, we get an isomorphism of the monoid V (X) with the monoid of isomorphism
classes of finitely generated projective modules over C(X), with ordinary direct
sum. Alternatively, V (X) is isomorphic to the monoid of equivalence classes of
idempotents in M∞(C(X)) = lim−→Mn(C(X)).

1.7.2. If R is any unital ring, we may define the monoid V (R) of isomorphism
classes of finitely generated projective R-modules, or of equivalence classes of
idempotents in matrix algebras over R. (If R is noncommutative, we must
specify left modules or right modules; but since the categories are equivalent, the
resulting monoid is the same.) Thus we can define K0(R) to be the Grothendieck
group of V (R). K0 is a covariant functor from unital rings to abelian groups
(this is why we write K0 rather than K0). We have K0(X) = K0(C(X)) and
K0

R(X) = K0(CR(X)).
If R is nonunital, we define K0(R) to be the kernel of the homomorphism

from K0(R+) to K0(Z) ∼= Z, where R+ is R with identity adjoined. (If R is a
complex algebra, adjoining an identity is usually done by adding a copy of C.
For K-theory the results are the same.)

The basic properties of K0 carry over to this algebraic situation. If 0→ J →
R → R/J → 0 is an exact sequence of rings, we have a short exact sequence
K0(J)→ K0(R)→ K0(R/J) which is an exact generalization of 1.5.1.

1.7.3. Although K0 works fine in a purely algebraic setting, difficulties arise
in trying to define higher algebraic K-groups due to the lack of any reasonable
notion of suspension. There is a way of defining higher algebraic K-groups (due
to Bass for K1, Milnor for K2, and Quillen for general Kn), which is satisfactory
in the sense that a long exact sequence is obtained, and the groups have identifi-
able algebraic significance (at least for n small). However, Kalg

1 (C(X)) does not
agree with K−1(X), and the definition of Kalg

n (R) becomes successively more
complicated and technical at each step. Algebraic K-theory has nonetheless be-
come an important branch of ring theory. See [Rosenberg 1994] for a complete
development of algebraic K-theory. The algebraic K-theory of C∗-algebras is
of interest in certain contexts (cf. [Connes 1994]), but is not a well-developed
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theory at present. (The algebraic and topological K-theories coincide for sta-
ble C∗-algebras: see [Rosenberg 1997] for an account of this and related results
about the algebraic K-theory of C*-algebras.)

1.7.4. If A is a Banach algebra, there is a natural notion of suspension: SA

is the Banach algebra of all continuous functions from R to A which vanish
at infinity. We have S(C0(X)) ∼= C0(SX) if X is a locally compact Hausdorff
space. We then define Kn(A) = K0(SnA). Remarkably, all of the results of
topological K-theory described in this section carry over to the Banach algebra
case, notably the long exact sequence and Bott Periodicity (hence the cyclic 6-
term exact sequence). Not only do the results hold true, but even the proofs,
when expressed in Banach algebra language, carry over verbatim in almost all
cases. In fact, the Banach algebra approach is probably the most elegant and
natural way to develop topological K-theory. (This approach to topological K-
theory actually appeared before Banach algebra K-theory was developed, due
primarily to work of Atiyah, Karoubi, Swan, and Wood.)

1.7.5. Not everything in topological K-theory carries over to the noncommuta-
tive case, however. The tensor product of vector bundles defines a multiplication
on K0(X) making it into a ring. (Actually one gets a graded ring structure on
K∗(X).) This ring structure can be extended to K0(R) whenever R is a com-
mutative ring, using tensor products of modules; but there is no obvious way of
putting a ring structure on K0(R) for noncommutative R. Similarly, the exterior
power operations on modules have no noncommutative analog.

2. Overview of Operator K-Theory

In this section, we will give an overview of the topics to be covered in these
notes. The point of view taken here is considerably different than that of Section
1, and is much more in keeping with the traditional ideas of the theory of oper-
ator algebras. No knowledge of topological K-theory is assumed; however, it is
beneficial to have some understanding of the material of Section 1, particularly
1.7, to appreciate how the ideas developed.

2.1. Noncommutative Topology

The theory we will develop is the heart of the subject of noncommutative
topology, which is the process of taking a concept from topology, rephrasing it
using the (contravariant) equivalence between the category of locally compact
Hausdorff spaces and the category of commutative C∗-algebras, and extending
the concept in a meaningful way to the category of all C∗-algebras (or some
suitable subcategory). The goal of noncommutative topology is to bring ideas,
techniques, and results from topology into the study of operator algebras, and
vice versa; both areas have already richly benefited from this process.

One of the motivations for developing the theory of noncommutative topology
(although not the only one) is that in many instances in ordinary topology the
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natural object of study is a “singular space” which cannot be defined and studied
in purely topological terms. Good examples are the orbit space of a group action
or the leaf space of a foliation. Although the singular spaceX may not really exist
topologically, there is often a (noncommutative) C∗-algebra which plays the role
of C0(X) in an appropriate sense. Most of the applications of noncommutative
topology to ordinary topology and geometry exploit this point of view.

Most of the noncommutative topology done so far has been noncommutative
algebraic topology, the process of extending the functors of ordinary algebraic
topology, regarded as functors from commutative C∗-algebras to abelian groups,
to more general C∗-algebras. There has been little success so far in extending the
standard homotopy, cohomotopy, homology, or cohomology functors (perhaps
with good reason—see 22.4.2 and 22.4.3); but the functors of complex K-theory
extend very nicely. We will describe these functors below purely in operator
algebra terms, referring to Section 1 for the connections with topology.

2.2. The K0-Functor

The first functor we will consider is the K0-functor. The goal here is to define a
group-valued “universal dimension function,” a function D from the projections
of a C∗-algebra A to an abelian group G, with the properties that D(p) = D(q)
whenever p ∼ q and D(p + q) = D(p) + D(q) whenever p ⊥ q, such that any
function from the projections of A to an abelian group with these properties
factors through D. The prototype is the Murray–von Neumann comparison
theory for finite factors, which may be regarded as the K0-theory of factors.
In this theory, the dimension function takes real-number values and completely
determines equivalence of projections. In the II1 case, the dimension group is R,
since the values of the dimension function fill up an entire interval in R, and all
of R+ if matrix algebras are considered.

In other cases, however, the group of real numbers is either too large or
inappropriate to serve as the range group of the universal dimension function.
For example, for C, Mn, or K, the appropriate range group is Z. For the CAR
algebra, the proper range group is the dyadic rationals. For a direct sum of two
II1 factors, the group should be R2. And for an infinite factor, the requirement
that the function be group-valued forces the range group to be {0}.

For any C∗-algebra A, we will define an abelian group K0(A) which is the
appropriate range group for the universal dimension function on A (and on all
matrix algebras over A). For A unital, the elements of K0(A) are formal dif-
ferences of equivalence classes of projections in matrix algebras over A. (If A is
nonunital, the proper definition is less obvious.) Matrix algebras over A must be
considered, and the equivalence relation on projections “stabilized”, in order to
get a group structure on K0(A). The definition of K0 is functorial, i.e. any homo-
morphism φ : A→ B induces a homomorphism φ∗ : K0(A)→ K0(B). In many
cases, the group K0(A) has a natural partial ordering which determines com-
parability of projections in A; in the particularly nice case of AF algebras, this
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partially ordered group (with an additional piece of structure called the “scale,”
the actual range of the dimension function on A) is a complete isomorphism
invariant for A.

2.3. The K1-Functor

The second functor we will examine is K1. The goal here is to define a
“universal index group” or “universal determinant function,” a continuous ho-
momorphism from the group of invertible elements of A, or of matrix algebras
over A (if A is nonunital, we add an identity), to a (discrete) abelian group. The
continuity requires such a homomorphism to be locally constant. The prototype
is the Fredholm index map from the invertible elements of the Calkin algebra
B/K to Z. As with K0, the group K1(A) will be the range group of this universal
index function, and K1 will be a covariant functor from C∗-algebras to abelian
groups.

There are two connections between K0 and K1. First, we have that K1(A) ∼=
K0(SA) for any A, where SA = C0(R, A) ∼= A ⊗ C0(R), and the more difficult
result that K0(A) ∼= K1(SA) (Bott periodicity). And secondly, if J is a (closed
two-sided) ideal in A, there are connecting homomorphisms from K1(A/J) to
K0(J) and from K0(A/J) to K1(J), called the index and exponential maps
respectively (both denoted ∂), making the following six-term sequence exact
everywhere:

K0(J)
ι∗ - K0(A)

π∗- K0(A/J)

K1(A/J)

∂ 6

�π∗
K1(A) �

ι∗
K1(J)
?
∂

This is called the fundamental exact sequence of K-theory, and is the principal
tool used in the calculation of the K-groups of standard C∗-algebras.

2.4. Extensions of C∗-Algebras

The next topic we consider is the theory of extensions of C∗-algebras. Given
C∗-algebras A and J , we want to find all C∗-algebras E containing J as an ideal,
with E/J ∼= A, i.e., we want to classify all exact sequences of the form

0 −→ J −→ E −→ A −→ 0

(up to a suitable notion of equivalence). Such an algebra or exact sequence is
called an extension of A by J.

Busby [1968], building on work of Hochschild, discovered that such exten-
sions are classified by homomorphisms from A into Q(J) = M(J)/J , the outer
multiplier algebra of J . The homomorphism τ : A → Q(J) is called the Busby
invariant of the extension; an extension is often identified with its Busby invari-
ant.
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The first systematic study of extensions was done by Brown, Douglas, and
Fillmore [Brown et al. 1977a], who examined the case J = K. They were origi-
nally interested in classifying essentially normal operators, but soon realized the
problem of classifying the essentially normal operators with essential spectrum
X is equivalent to the classification of extensions of C(X) by K. The most nat-
ural notion of equivalence was unitary equivalence of the corresponding Busby
invariants. The theory turned out to work almost equally well in the case of
noncommutative A.

In the case J = K, there is a binary operation on the set Ext(A) of equivalence
classes, which makes Ext(A) into an abelian monoid if A is separable (a theorem
of Voiculescu); in nice cases, e.g. when A is nuclear, Ext(A) is an abelian group.
Ext is a contravariant functor from C∗-algebras to abelian semigroups. There are
analogs of Bott periodicity and the six-term cyclic exact sequence of K-theory.

BDF showed that if X is compact, then Ext(C(X)) ∼= K1(X), the first K-
homology group of X(K-homology is the homology theory which is dual to com-
plex K-theory). This result attracted great attention from topologists, and may
fairly be regarded as the beginning of noncommutative topology as a discipline
(although work such as Murray-von Neumann dimension theory, Fredholm in-
dex theory, and the Atiyah–Karoubi approach to topological K-theory can in
retrospect be considered to be pioneering work in noncommutative topology).

Building on the BDF work, and intermediate work of Pimsner, Popa, and
Voiculescu [Pimsner et al. 1979; 1980], Kasparov [1975] studied the case where
A is separable and J = B⊗K for B a C∗-algebra with a strictly positive element.
One obtains a binary operation on the set of unitary equivalence classes as in the
BDF case; and when the subsemigroup of trivial extensions (ones whose Busby
invariant lifts to a homomorphism from A to M(J)) is divided out, an abelian
monoid Ext(A,B) is obtained, which is a group in nice cases (e.g. when A is
nuclear). Kasparov’s Ext is a bifunctor from pairs of (suitably nice) C∗-algebras
to abelian groups, contravariant in the first variable and covariant in the second.
Ext(A,C) is the BDF semigroup Ext(A); and Ext(C, B) is isomorphic to K1(B).
There is Bott periodicity and a six-term cyclic exact sequence in each variable
separately.

2.5. KK-Theory

The final step (for us) in the development of operator K-theory is the KK-
theory of Kasparov [1980b]. Given a pair of C∗-algebras (A,B), with A sepa-
rable and B containing a strictly positive element, we define an abelian group
KK(A,B). There are two standard ways of viewing the elements of KK(A,B),
as Fredholm modules or as quasihomomorphisms; each is useful in certain ap-
plications. The quasihomomorphism approach (due to Cuntz) is perhaps more
intuitive. A quasihomomorphism from A to B is a pair (φ, φ) of homomorphisms
from A to M(B ⊗ K) which agree modulo B ⊗ K. Then KK(A,B) is the set
of equivalence classes of quasihomomorphisms from A to B, under a suitable
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notion of equivalence; the group operation, similar to that on Ext , is essentially
orthogonal direct sum. KK is a homotopy-invariant bifunctor from pairs of C∗-
algebras to abelian groups, contravariant in the first variable and covariant in
the second. KK(C, B) ∼= K0(B).

The central tool in the theory is the intersection product, a method of com-
bining an element of KK(A,B) with one in KK(B,C) to yield an element of
KK(A,C). In the quasihomomorphism picture, the intersection product gives a
way of “composing” quasihomomorphisms; if one of the quasihomomorphisms is
an actual homomorphism, then the intersection product is really just composi-
tion, defined in a straightforward way. The technical details of establishing the
properties of the intersection product are formidable.

Armed with the intersection product, it is fairly easy to prove all the impor-
tant properties of the KK-groups. First, KK(SA,B) ∼= KK(A,SB); call this
KK1(A,B). Then we have Bott periodicity KK1(SA,B) ∼= KK1(A,SB) ∼=
KK(A,B) ∼= KK(SA, SB). Moreover KK1(C, B) ∼= K1(B); more generally,
if A is nuclear, then KK1(A,B) ∼= Ext(A,B). There are cyclic six-term exact
sequences in each variable separately under some mild restrictions.

There are some situations where the six-term exact sequences do not hold in
KK-theory, however. This shortcoming and some important potential applica-
tions led Connes and Higson to develop E-theory, which may be regarded as a
“variant” of KK-theory in which the six-term exact sequences hold in complete
generality (for separable C∗-algebras). The basic objects of study in E-theory
are asymptotic morphisms, paths of maps which become asymptotically ∗-linear
and multiplicative. E-theory is developed in Section 25.

2.6. Further Developments

Work of Cuntz, Higson, Rosenberg, and Schochet shows that K-theory can be
characterized (at least for suitably nice C∗-algebras) by a simple set of axioms
analogous to the Steenrod axioms of cohomology, and has established generaliza-
tions for KK-theory of the Universal Coefficient Theorem and Künneth Theorem
of topology, which provide powerful tools for the calculation of the KK-groups
of many C∗-algebras.

Operator K-theory has led both to spectacular advances within the subject of
operator algebras and to deep applications to problems in geometry and topol-
ogy. Besides the classification of AF algebras, probably the greatest achievement
of K-theory within operator algebras has been to give some insight into the pre-
viously mysterious (and still rather mysterious) internal structure of crossed
products and free products of C∗-algebras. The two most notable applications
to geometry and topology so far have been the various generalizations of the
Atiyah–Singer Index Theorem due to Connes, Skandalis, Kasparov, Moscovici,
Mǐsčenko, Fomenko, and Teleman, and the work on the homotopy invariance
of higher signatures of manifolds by Kasparov and Mǐsčenko and vanishing of
“higher Â-genera” of manifolds of positive scalar curvature by Rosenberg (par-
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allel to work of Gromov and Lawson). It would appear certain that the work
so far has only scratched the surface of the possibilities. Until recently it would
have been difficult to conceive of theorems in differential topology whose proofs
require the use of operator algebras in an essential way.

2.6.1. The most elegant way to approach operator K-theory would be to plunge
right into KK-theory, beginning in Chapter VIII. Indeed, this would be possible,
since chapters VIII–IX are largely independent of the earlier chapters, and con-
tain all the earlier results (except those on the ordering of K0 and the structure
of AF algebras) as a special case. I prefer to take a more pedestrian approach
to K-theory, since I feel the “traditional” point of view of chapters III–V has
independent merit, both historical and conceptual, which is nearly impossible to
dig out of the elegant and high-powered approach of the later sections.

We do most of the basic K-theory for general Banach algebras (and even for
“local Banach algebras”), since the theory is identical and requires no more work
except for a few preliminaries, and because theK-theory of some Banach algebras
such as function algebras [Taylor 1975], non-self-adjoint operator algebras [Lance
1985], and group convolution algebras [Rosenberg 1984, 2.1], is of interest. Since
the principal objects of study are C∗-algebras, we restrict to this case whenever
necessary. Beginning with Chapter V, all algebras are C∗-algebras (or sometimes
local C∗-algebras). Even in the earlier sections all examples are C∗-algebras. It
would be a challenging project (one which I will leave to others) to generalize
Extension Theory and Kasparov Theory to more general Banach algebras.
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CHAPTER II

PRELIMINARIES

This chapter is devoted to a development of the basic facts about equivalence
of idempotents and projections, inductive limits, and quotients. All readers are
urged to at least browse through the chapter, since much of our basic notation
is established here.

3. Local Banach Algebras and Inductive Limits

3.1. Local Banach Algebras

While we will be primarily concerned with the study of Banach algebras, in
fact almost entirely with C∗-algebras, it is sometimes useful to deal with a dense
∗-subalgebra which is “complete enough” to make the theory work.

Definition 3.1.1. A local Banach algebra is a normed algebra A which is closed
under holomorphic functional calculus (i.e. if x ∈ A and f is an analytic function
on a neighborhood of the spectrum of x in the completion of A, with f(0) = 0 if
A is nonunital, then f(x) ∈ A.) For technical reasons we will also require that
all matrix algebras over A have the same property. If A is a ∗-algebra, it will be
called a local Banach ∗-algebra; if the norm is a pre-C∗-norm, A will be called a
local C∗-algebra.

Note that our definition of a local C∗-algebra does not agree with the definitions
in [Behncke and Cuntz 1976] and [Blackadar and Handelman 1982].

Examples 3.1.2. (a) If A is any C∗-algebra, then the Pedersen ideal [Pedersen
1979, 5.6] P (A) is a local C∗-algebra. In particular, if X is a locally compact
Hausdorff space, then Cc(X) is a local C∗-algebra.

(b) Generalizing (a) [Pedersen 1979, 5.6.1], an algebraic direct limit of Banach
algebras (see Theorem 3.3.2) is a local Banach algebra.

(c) If X is a C∞-manifold, then C∞c (X) is a local C∗-algebra.
(d) The domain of a closed ∗-derivation on a C∗-algebra is a local C∗-algebra.
(e) Local C∗-algebras arise naturally in many applications of K-theory to non-

commutative differential geometry [Connes 1994].

Proposition 3.1.3. Let A be a unital local Banach algebra. If z ∈ A is in-
vertible in the completion Ā of A, then z is invertible in A. So in any local
Banach algebra, the spectrum of an element is the same as its spectrum in the
completion.

15
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Proof. If z is invertible in Ā, then the Ā-spectrum of z is contained within the
region of analyticity of f(λ) = λ−1. �

Corollary 3.1.4. If A is a unital local Banach algebra, then the invertible
elements of A are dense in the invertible elements of Ā.

Corollary 3.1.5 [Pedersen 1979, 1.5.7]. If A is a local C∗-algebra, and φ is a
∗-homomorphism from A into a C∗-algebra B, then φ is norm-decreasing .

3.1.6. Unlike the case of C∗-algebras, an injective homomorphism from a local
C∗-algebra A into a C∗-algebra B need not be an isometry, and the image
need not be a local C∗-algebra. For example, take for A the subalgebra of
C([0, 2]) consisting of restrictions of functions analytic in a neighborhood of
[0, 2], take B = C([0, 1]), and consider the homomorphism given by restriction.
The difficulty is the lack of partitions of unity. If A is closed under C∞ functional
calculus of normal elements, then any injective homomorphism from A to a C∗-
algebra will be an isometry, so A has a unique pre-C∗-norm. It is true in general
that a local C∗-algebra has a unique local C∗-norm.

3.1.7. A local C∗-algebra admits polar decomposition of invertible elements
(
if

z is invertible in A, then (z∗z)−1/2 is defined in A and z = u(z∗z)1/2 with
u = z(z∗z)−1/2

)
, so for local C∗-algebras 3.1.4 remains true with “unitary” in

place of “invertible element”.

3.1.8. If A is a normed algebra with the property that whenever x ∈ A and f

is analytic on a disk centered at 0 of radius greater than ‖x‖ (with f(0) = 0 if
A is nonunital), then f(x) ∈ A, one can show that A is a local Banach algebra
[Schmitt 1991, 2.1]. It follows that if A is a local Banach algebra and J is a
closed two-sided ideal, then A/J is also a local Banach algebra.

3.2. Unitization

Definition 3.2.1. A+ = {(a, λ) : a ∈ A, λ ∈ C} is A with identity adjoined
(even if A already has one.) The multiplication is given by (a, λ) · (b, µ) =
(ab + λb + µa, λµ).

A+ is a local Banach algebra under the norm ‖(a, λ)‖ = ‖a‖ + |λ| (or other
equivalent norm.) If A is complete, then A+ is also complete. A is a two-sided
ideal in A+. Let Ã be the smallest unital subalgebra of A+ containing A, i.e.
Ã = A if A has an identity and Ã = A+ otherwise.

If A is a C∗-algebra, then A+ can be made into a C∗-algebra in a unique way
[Pedersen 1979, 1.1.3].

We denote the n× n matrix algebra over A by Mn(A). Mn(A) can be made
into a local Banach algebra in many equivalent ways (e.g. with the operator
norm on Ãn); if A is a local C∗-algebra, then Mn(A) can be made into a local
C∗-algebra in a unique way.
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3.3. Inductive Limits

We now describe the construction of the inductive limit of a directed set of
Banach algebras.

Given a set {Xi : i ∈ I} of semigroups, groups, rings, algebras, etc., where I
is a directed set, and a coherent family of morphisms φij : Xi → Xj for i < j

(coherent means that φik = φjk ◦ φij for i < j < k), one can form the direct
limit X = lim−→(Xi,φij), usually denoted lim−→Xi when the φij are understood.
When all the φij are injective, we can (modulo logical technicalities) regard X

as the union of the Xi. X has the usual universal property: any coherent family
of morphisms from the Xi to Y induces a unique morphism from X to Y . A
complete discussion can be found in many standard texts such as [Grätzer 1968].

An inductive system (Ai, φij) of local Banach algebras is called a normed
inductive system if each φij is bounded and lim supj ‖φij‖ < ∞ for each i. If
each Ai is complete, it follows easily from the Banach–Steinhaus theorem that
(Ai, φij) is a normed inductive system if and only if each φij is bounded and for
each i and each x ∈ Ai we have lim supj ‖φij(x)‖ <∞. Any inductive system of
local C∗-algebras and ∗-homomorphisms is a normed inductive system by 3.1.5.

If (Ai, φij) is a normed inductive system, then the algebraic direct limit has
a natural seminorm ‖|x‖| = lim supj ‖φij(x)‖. The normed inductive limit is the
quotient of the algebraic direct limit by the elements of seminorm 0, and the
Banach algebra inductive limit is the completion of the normed inductive limit.
Unless otherwise qualified, “inductive limit” will mean “Banach algebra inductive
limit”. We will reserve the notation lim−→Ai for the inductive limit, denoting the
algebraic direct limit by alglim−−−→Ai. There is a canonical homomorphism φi from
Ai to the normed inductive limit, which is continuous (bounded).

A particularly important case occurs when each φij is an isometric embedding
(an injective ∗-homomorphism between C∗-algebras is automatically an isome-
try.) In this case, the normed inductive limit coincides with the algebraic direct
limit and may be thought of as

⋃
Ai.

Note that if A = lim−→Ai, then A+ = lim−→A+
i under unital maps, and Mn(A) =

lim−→Mn(Ai).

Lemma 3.3.1. If A is the normed inductive limit of (Ai, φij) under unital maps,
and z ∈ Ai with φi(z) invertible in Ā, then for sufficiently large j > i, φij(z) is
invertible in Aj .

Proof. For sufficiently large k > i there is a w ∈ Ak with φi(z)φk(w) and
φk(w)φi(z) both close to 1. Then for sufficiently large j > k both φij(z)φkj(w)
and φkj(w)φij(z) are close to 1, so φij(z) is left and right invertible in Aj . �

Theorem 3.3.2. If A is the normed inductive limit of (Ai, φij), then A is a
local Banach algebra.

Proof. We may assume that the inductive limit is unital. Let x ∈ A and f

analytic on a bounded neighborhood U of σĀ(x). Let z ∈ Ai with φi(z) = x,
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and let D be a closed disk containing U of radius greater than lim supj ‖φij(z)‖.
For each λ ∈ D \ U there is a j > i with λ − φij(z) invertible in Aj by 3.3.1,
so there is a neighborhood V of λ such that µ− φij(z) is invertible in Aj for all
µ ∈ V . Using the compactness of D \U , for sufficiently large j > i, λ− φij(z) is
invertible in Aj for all λ ∈ D \U . This implies σAj (φij(z)) is contained in U , so
f(φij(z)) is defined in Aj and its image is f(x). �

The argument in 3.3.2 can be greatly simplified in the case of an inductive limit
of C∗-algebras and injective connecting maps.

Combining 3.1.4, 3.3.1, and 3.3.2, we get:

Proposition 3.3.3. Let A = lim−→Ai with unital maps, and let z be invertible
in A. Then, for any ε > 0, for all sufficiently large i there is an invertible w in
Ai with ‖φi(w)− z‖ < ε.

It follows from 3.1.7 that if the Ai are local C∗-algebras, then 3.3.3 remains true
with “invertible” replaced by “unitary”.

3.4. Invertible Elements

We conclude this section with two results about the connected component of
the identity in the group of invertible elements in a unital local Banach algebra,
and one additional anomalous result which will be needed later.

Proposition 3.4.1. Let A be a unital local Banach algebra. If x and y are in-
vertible in A, then there is a path of invertible elements in M2(A) from diag(xy, 1)
to diag(x, y). If A is a local C∗-algebra and x and y are unitary , the path may
be chosen to consist of unitaries. So if z is invertible in A, then there is a path
of invertibles in M2(A) from 1 to diag(z, z−1).

Proof. Set wt = diag(x, 1) · ut · diag(y, 1) · u−1
t , where

ut =
[

cos π2 t − sin π
2 t

sin π
2 t cos π2 t

]
. �

Since diag(x, y) and diag(y, x) are connected by a similar path, 3.4.1 implies that
diag(xy, 1) and diag(yx, 1) are connected by a path of invertibles.

3.4.1 is a variant of the “Whitehead lemma” [Whitehead 1941; Bass 1968;
Rosenberg 1994], which says that diag(xy, 1), diag(yx, 1), and diag(x, y) are
all obtainable from one another by left and right multiplication by products of
elementary matrices. The form of the proof of 3.4.1 (cf. [Atiyah 1967, 2.4.6]) is
more suitable for our purposes.

3.4.2. If A is a local Banach algebra, we write GLn(A) to denote the group of
invertible elements in Mn(A+) which are congruent to 1n mod Mn(A). If A is
unital, then GLn(A) is isomorphic to the group of invertible elements of Mn(A).
If A is a local C∗-algebra, we let Un(A) denote the group of unitaries in Mn(A+)
which are congruent to 1n mod Mn(A). These are topological groups with the
norm topology. Let GLn(A)0 and Un(A)0 denote the connected components of
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the identity. Since the groups are locally path-connected, these are also the path
components of the identity; and they are open subgroups.

Proposition 3.4.3. Let A be a unital local Banach algebra. Then GL1(A)0 is
the subgroup of GL1(A) generated algebraically by {ex : x ∈ A}.

Proof. ex is invertible (with inverse e−x), and {etx : 0 ≤ t ≤ 1} is a path to 1,
so ex ∈ GL1(A)0. On the other hand, if ‖z − 1‖ < 1, then x = log z is defined
and satisfies ex = z. So the group generated algebraically by {ex : x ∈ A} is
open. �

Corollary 3.4.4. If A and B are unital local Banach algebras and φ : A→ B

is a continuous surjective homomorphism, then φ(GL1(A)0) = GL1(B)0.

Proof. If x ∈ A with φ(x) = y, then φ(ex) = ey, so all exponentials must lie in
φ(GL1(A)0), which is a connected subgroup of GL1(B). �

If A and B are Banach algebras, a (simpler) proof of 3.4.4 can be given using
the Open Mapping Theorem instead of 3.4.3.

Thus, although invertible elements in quotients cannot in general be lifted to
invertible elements, ones in the connected component of 1 can always be lifted
(with the lifted invertible also in the connected component of the identity.)

As usual, for local C∗-algebras there is a unitary analog of 3.4.3 and 3.4.4:

Proposition 3.4.5. If A is a unital local C∗-algebra, then U1(A)0 is generated
algebraically by {eix : x = x∗ ∈ A}. If B is also a unital local C∗-algebra and
φ : A→ B is surjective and unital , then φ(U1(A)0) = U1(B)0.

The final result concerns lifting homotopies from quotient algebras. This result
is probably true in greater generality and may be known, but I could find no
reference.

Proposition 3.4.6. Let A be a C∗-algebra, J a closed two-sided ideal in A, and
π : A→ A/J the quotient map. Let (x̄t), with 0 ≤ t ≤ 1, be a norm-continuous
path of elements in A/J , and let x0 and x1 be elements of A with π(xi) = x̄i for
i = 0, 1. Then there is a norm-continuous path (xt) of elements of A from x0 to
x1 with π(xt) = x̄t for all t.

Proof. Set ȳt = x̄t − (1− t)x̄0 − tx̄1. Then ȳ0 = ȳ1 = 0. Using the surjectivity
of the map C0((0, 1), A)/C0((0, 1), J)→ C0((0, 1), A/J) (a fact about C∗-tensor
products), we can find a continuous path (yt) ⊆ A with y0 = y1 = 0 and
π(yt) = ȳt for all t. Set xt = yt + (1− t)x0 + tx1. �

4. Idempotents and Equivalence

In this section, we will study the basic properties of idempotents in local
Banach algebras, and the various notions of equivalence. Throughout, A will
denote a local Banach algebra.
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4.1. Idempotents

Definition 4.1.1. An idempotent in A is an element e with e2 = e. Two
idempotents e and f are orthogonal (e ⊥ f) if ef = fe = 0. If e ⊥ f , then e+ f

is an idempotent. We have e ⊥ (1− e). We say that e ≤ f if ef = fe = e. This
implies that f − e is an idempotent.

If A is a local C∗-algebra, this is not the usual notion of orthogonality, which
also requires that e∗f = fe∗ = 0. The two notions coincide for projections. The
one given here is more useful for general idempotents.

4.2. Equivalence of Idempotents

There are several notions of equivalence of idempotents:

Definition 4.2.1. Let e and f be idempotents in A.
e ∼ f if there are x, y ∈ A with xy = e and yx = f . (algebraic equivalence)
e ∼s f if there is an invertible z in Ã with zez−1 = f . (similarity)
e ∼h f if there is a norm-continuous path of idempotents in A from e to f .
(homotopy)

Proposition 4.2.2. If e ∼ f , then there exist x, y ∈ A with xy = e, yx = f ,
x = ex = xf = exf , y = fy = ye = fye.

Proof. Replace x by exf , y by fye. Then (exf)(fye) = exfye = exyxye =
e4 = e, and similarly for (fye)(exf). �

Corollary 4.2.3. ∼ is an equivalence relation.

Proof. Let e = xy, f = yx = zw, g = wz, with x = exf , y = fye, z = fzg,
w = gwf . Then (xz)(wy) = xfy = e, and (wy)(xz) = wfz = g. �

Proposition 4.2.4. If e1 ∼ f1, e2 ∼ f2, e1 ⊥ e2, f1 ⊥ f2, then e1+e2 ∼ f1+f2.

Proof. For i = 1, 2, let xiyi = ei, yixi = fi, xi = eixifi, yi = fiyiei. Then
(x1 + x2)(y1 + y2) = e1 + e2 and (y1 + y2)(x1 + x2) = f1 + f2. �

Proposition 4.2.5. e ∼s f if and only if e ∼ f and 1− e ∼ 1− f .

Proof. If zez−1 = f , set x = ez−1, y = ze. Similarly, z(1 − e)z−1 = 1 − f , so
1− e ∼ 1− f . Conversely, if xy = e, yx = f , x = exf , y = fye, and ab = 1− e,
ba = 1− f , a = (1− e)a(1− f), b = (1− f)b(1− e), then z = x+ a is invertible
with z−1 = y + b, and zez−1 = f . �

4.3. Algebraic Equivalence, Similarity, and Homotopy

It is not true that e ∼ f implies e ∼s f . For example, if p is an infinite-rank
projection in B, then p ∼ 1, but p is not similar to 1. However:

Proposition 4.3.1. If e ∼ f , then
[
e 0
0 0

]
∼s
[
f 0
0 0

]
in M2(A).
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Proof. Let x, y be as in 4.2.2, and

z =
[

1− f y

x 1− e

] [
1− e e

e 1− e

]
.

Then

z−1 =
[

1− e e

e 1− e

] [
1− f y

x 1− e

]
. �

Proposition 4.3.2. If ‖e − f‖ < 1/‖2e − 1‖, then e ∼s f . In fact , there is a
z ∈ Ã with ‖z − 1‖ ≤ ‖2e− 1‖‖e− f‖ and z−1ez = f . Also, e ∼h f .

Proof. Set v = (2e − 1)(2f − 1) + 1. We have 2 − v = 2(2e − 1)(e − f), so if
2 ‖2e− 1‖‖e− f‖ < 2, then v is invertible; and ev = vf = 2ef . Set z = v/2 and
wt = tz + (1− t). Then wt is invertible. Set et = w−1

t ewt. �

Proposition 4.3.3. If e ∼h f with path et, there is a path zt of invertibles with
z0 = 1 and z−1

t ezt = et for all t. So e ∼s f .

Proof. Choose K with ‖2et − 1‖ ≤ K for all t, and find 0 = t0 < t1 <

· · · < tn = 1 with ‖et − es‖ < 1/K if s and t are in the same interval. Set
vt = (2eti − 1)(2et − 1) + 1 for ti ≤ t ≤ ti+1, and ut = vt/2. Let zt = ut for
0 ≤ t ≤ t1, zt = utut1 for t1 ≤ t ≤ t2, . . . , zt = ututn−1 . . . ut1 for tn−1 ≤ t ≤ 1.

�

4.3.2 can be rephrased into a result which can be regarded as the fundamental
technical theorem of K-theory. We let Ip(A) be the set of idempotents in A, and
if A is unital A−1 denotes the set of invertible elements in A. Give these sets
the norm topology; A−1 is a topological group.

Theorem 4.3.4. Let A be a local Banach algebra. Consider the action γ of Ã−1

on Ip(A) given by γ(z)(e) = zez−1. Then:

(a) The orbits of γ are open and closed ; the orbit containing e contains the open
ball Be of radius ‖2e− 1‖−1 around e in Ip(A)

(b) For any e ∈ Ip(A), there is a continuous cross section we : Be → Ã−1 for γ
(i .e. we(f)ewe(f)−1 = f) with we(e) = 1

(c) The association e → we is functorial , i .e. if φ : A → B is a (bounded)
homomorphism, then wφ(e)(φ(f)) = φ(we(f)) for f in a sufficiently small
neighborhood of e

(
precisely , ‖e− f‖ < (‖φ‖‖2e− 1‖)−1

)
.

Proof. This is mostly contained in the proof of 4.3.2. The formula for we(f)
is 1

2

(
(2e − 1)(2f − 1) + 1

)
. The assertions not spelled out in the proof of 4.3.2

are routine, and are left to the reader. �

4.4. Similarity vs. Homotopy

It is not true that e ∼s f implies e ∼h f . There is a counterexample in
M2(C(S3)). However, as with ∼ and ∼s, there is a 2× 2 matrix result:
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Proposition 4.4.1. If e ∼s f , then
[
e 0
0 0

]
∼h
[
f 0
0 0

]
.

Proof. Let zez−1 = f , and let wt be a path from 1 to diag(z, z−1) as in 3.4.1.
Set et = wt diag(e, 0)w−1

t . �

4.5. Equivalence and Completion

4.3.2 also implies that idempotents and equivalence in the completion of A
can be approximated in A:

Proposition 4.5.1. Let A be a local Banach algebra, e an idempotent in Ā, and
ε > 0. Then there is an idempotent e0 in A with ‖e − e0‖ < ε. If f is another
idempotent in Ā with e ∼s f , then there is an f0 in A with ‖f − f0‖ < ε and
e0 ∼s f0 within A.

Proof. If x ∈ A with ‖x− e‖ small enough, then ‖x− x2‖ will be small, so the
spectrum of x will be contained in the union of a small disk around 0 and a small
disk around 1; so e0 can be made from x by holomorphic functional calculus.
For the second part, let z ∈ Ā with zez−1 = f . Approximate z closely by an
invertible w ∈ A (3.1.4), and set f0 = we0w

−1. �

The similarity of 4.5.1 and 3.1.4 is no accident. In fact, one of the philosophical
tenets of K-theory is the close relationship between idempotents and invertible
elements (or between projections and unitaries in a C∗-algebra.)

Proposition 4.5.2. Let A be the normed inductive limit of (Ai, φij), and e an
idempotent in A. Then for sufficiently large i there is an idempotent e0 ∈ Ai
with φi(e0) = e. If e, f ∈ A with e ∼s f , then there are idempotent preimages e0

and f0 in Ai for sufficiently large i with e0 ∼s f0 in Ai.

Proof. Let x be a preimage of e in Ai for some i. We have
⋂
j>i σ(φij(x)) =

σ(e) = {0, 1} by 3.3.1, so for sufficiently large j 0 and 1 lie in different components
of σ(φij(x)), and we may find disjoint open sets U, V ⊆ C with 0 ∈ U , 1 ∈ V ,
and σ(φij(x)) ⊆ U ∪ V . Set g = 0 on U , g = 1 on V , and e0 = g(φij(x)).

For the second part, let z ∈ Ã with zez−1 = f . Choose i large enough that
e and f have idempotent preimages e0 and f0 in Ai, and z has an invertible
preimage w in Ãi. Set f1 = we0w

−1. Since φi(f1) = φi(f0) = f , by increasing i
if necessary we may make ‖f1 − f0‖ small, so e0 ∼s f1 ∼s f0. �

4.6. Projections

We now let A be a local C∗-algebra, and show that all relevant aspects of
idempotent theory can be done with projections. Some of the results are true
for more general local Banach ∗-algebras.

Definition 4.6.1. A projection is a self-adjoint idempotent. A partial isometry
is an element u with u∗u a projection. If A has a unit, then u is an isometry if
u∗u = 1, and u is unitary if u∗u = uu∗ = 1.
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If p and q are projections, the following conditions are equivalent: (i) p ≤ q as
idempotents; (ii) p ≤ q in the sense of positive elements of A; (iii) p ≤ λq (in the
sense of positive elements of A) for some λ > 0; (iv) q − p is a projection.

We will usually use p and q to denote projections and e and f to denote
general idempotents.

Proposition 4.6.2. Every idempotent in A is similar to a projection. In fact ,
any idempotent is homotopic to a projection.

Proof. Let e be an idempotent. Set z = 1 + (e − e∗)(e∗ − e). Then z is an
invertible positive element of Ã; set r = z−1. We have ze = ez = ee∗e, so
er = re, re∗ = e∗r. Set p = ee∗r. Then p = p∗, and p2 = ee∗ree∗r = ree∗ee∗r =
rzee∗r = ee∗r = p. Moreover ep = p, pe = e. For any t ∈ R, (1 − te + tp) is
invertible, with inverse (1− tp+ te); (1− p+ e)e(1− e+ p) = p. [Actually p is
the range projection of e, or the support projection of ee∗, in A∗∗; this argument
shows that p ∈ A.] �

A similar proof shows:

Proposition 4.6.3. If p ∼h q, then there is a path of projections from p to q.

Proof. Let et be a path of idempotents from p to q. As in the proof of 4.6.2,
let zt = 1 + (et − e∗t )(e∗t − et), pt = ete

∗
t z
−1
t . �

The proofs of 4.6.2 and 4.6.3 work in any regular local Banach ∗-algebra, i.e. one
in which 1 + x∗x is always invertible.

Proposition 4.6.4. If p ∼ q, then there is a partial isometry u with u∗u =
p, uu∗ = q.

Proof. Let p = xy, q = yx with x = pxq, y = qyp. Then p = p∗p = y∗x∗xy ≤
‖x‖2y∗y, so y∗y is invertible in pAp. Let (y∗y)1/2r = p with r = prp, and set u =
yr. [This u is the partial isometry in the polar decomposition of y in A∗∗. The
argument shows that u ∈ A.] Then y = u(y∗y)1/2. u∗u = p. Also, q(uu∗) = uu∗,
so uu∗ ≤ q. But q = yxx∗y∗ ≤ ‖x‖2yy∗ = ‖x‖2u(y∗y)u∗ ≤ ‖x‖2‖y‖2uu∗. �

The u in 4.6.4 is called a partial isometry from p to q, and p and q are said to
be Murray-von Neumann equivalent.

Proposition 4.6.5. If p ∼s q, then there is a unitary u with upu∗ = q.

Proof. Let zpz−1 = q. Then zp = qz and pz∗ = z∗q, so pz∗z = z∗qz = z∗zp,
and so p(z∗z)1/2 = (z∗z)1/2p. Set u = z(z∗z)−1/2; then u is unitary and upu∗ =
q. �

If the conclusion of 4.6.5 holds, we say p and q are unitarily equivalent, written
p ∼u q.

There are exact analogs of 4.3.2 through 4.5.2 with “idempotent” replaced
by “projection” and “invertible element” by “unitary”. Details are left to the
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reader. Note that if p is a projection, then 2p− 1 is a (self-adjoint) unitary [and
conversely], so ‖2p− 1‖ = 1. Thus for projections 4.3.2 becomes:

Proposition 4.6.6. If p and q are projections with ‖p − q‖ < 1, then p ∼h q,
so p ∼u q.

In this case, there is an explicit path as follows. Let u = 2p − 1, v = 2q − 1,
r = uv + vu = 2 − 4(p − q)2 in Ã. Then u2 = v2 = 1, and r commutes with u

and v. We have r > −2, so 1 +λr is positive and invertible for 0 ≤ λ ≤ 1/2. Set
ut = (1 + r cos t sin t)−1/2(u cos t + v sin t) for 0 ≤ t ≤ π/2. ut is a self-adjoint
unitary; set pt = (ut + 1)/2. Then (pt) is a path of projections in A from p to q.
(We have pt ∈ A since u = v = −1 and r = 2 mod A, so ut = −1 mod A.)

4.3.4 is also worth stating explicitly for projections:

Theorem 4.6.7. Let A be a local C∗-algebra. Consider the action γ of U(Ã)
on the set Pr(A) of projections in A given by

[
γ(u)

]
(p) = upu∗. Then:

(a) The orbits of γ are open and closed ; the orbit containing p contains the open
ball Bp of radius 1 around p in Pr(A).

(b) For any p ∈ Pr(A), there is a continuous cross section vp : Bp → U(Ã) for
γ (i .e. vp(q)pvp(q)∗ = q) with vp(p) = 1.

(c) The association p → wp is functorial , i .e. if π : A → B is a ∗-homo-
morphism, then vπ(p)(π(q)) = π(vp(q)) for q ∈ Bp.

The unitary vp(q) is the unitary in the polar decomposition of wp(q) of 4.3.4.

4.7. EXERCISES AND PROBLEMS

4.7.1. [Blackadar 1985b] (a) A separable C∗-algebra A is semiprojective if, for
any C∗-algebra B, any increasing sequence 〈Jn〉 of (closed two-sided) ideals of B,
and any ∗-homomorphism φ : A→ B/J , where J =

(⋃
Jn
)−, there is an n and

a ∗-homomorphism ψ : A→ B/Jn such that φ = π ◦ ψ, where π : B/Jn → B/J

is the natural quotient map. A φ for which such a ψ exists is said to be partially
liftable. If there is a ψ : A → B with φ = π ◦ ψ, then φ is liftable; if every
homomorphism from A is liftable, A is said to be projective.

(b) C0((0, 1]) is the universal C∗-algebra generated by a positive element of norm
1. Since such elements can be lifted from quotients, C0((0, 1]) is projective.

(c) Let B, Jn, and J be as in (a), and let q1, . . . , qk be mutually orthogonal
projections in B/J . Then for sufficiently large n, there are mutually orthogonal
projections p1, . . . , pk in B/Jn with π(pk) = qk. If B (and hence B/J) is unital
and q1 + · · · + qk = 1, then we may choose the pj so that p1 + · · · + pk = 1.
[Prove this by induction on k; use functional calculus to do the case k = 1 (see
the proof of 4.5.1).]

(d) Let B, Jn, J be as in (a). Let v be a partial isometry in B/J , and set
q1 = v∗v, q2 = vv∗. Suppose there are projections p1, p2 ∈ B/Jn for some n
with π(pj) = qj . Then, after increasing n if necessary, there is a partial isometry
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u ∈ B/Jn with π(u) = v and p1 = u∗u, p2 = uu∗. [Use functional calculus and
4.3.4.]

(e) Use (c) and (d) to show that the following C∗-algebras are semiprojective:
C, Mn, C(T), S = C0(R), the Toeplitz algebra T (9.4.2), the Cuntz algebras On
(6.3.2), and the Cuntz–Krieger algebras OA (10.11.9). (O∞ is also semiprojective
[Blackadar 1998], but this does not follow from (c) and (d).) [Write each of these
as a universal C∗-algebra on a finite set of partial isometries satisfying simple
algebraic relations.] None of these C∗-algebras are projective.

(f) [Blackadar 1985b, 2.19; Loring 1997] A finite direct sum of semiprojective
C∗-algebras is semiprojective.

(g) [Blackadar 1985b, 2.28–2.29; Loring 1997] If A is semiprojective, then Mn(A)
is semiprojective for all n. If A is unital and semiprojective, then any unital C∗-
algebra strongly Morita equivalent to A is also semiprojective.

(h) [Blackadar 1985b, 3.1] Let A be a semiprojective C∗-algebra, and (Bn, βm,n)
be an inductive system of C∗-algebras with B = lim−→(Bn, βm,n). If φ : A → B

is a homomorphism, then for all sufficiently large n there are homomorphisms
φn : A→ Bn such that βn ◦ φn is homotopic to φ and converges pointwise to φ
as n→∞, where βn is the standard map from Bn to B.

The notions of projectivity and semiprojectivity were introduced in the devel-
opment of shape theory for C∗-algebras [Effros and Kaminker 1986; Blackadar
1985b] as noncommutative analogs of the topological notions of absolute retract
(AR) and absolute neighborhood retract (ANR) respectively. Semiprojective C∗-
algebras have rigidity properties which make them conceptually and technically
important in several aspects of C∗-algebra theory; this is reflected especially in
the work of Loring [1997] and his coauthors. It is not too easy for a C∗-algebra
to be semiprojective, but there does seem to be a reasonable supply of such
algebras.

Notes for Chapter II

Many of the results in this chapter are ancient folklore, and it is difficult to
trace the origin of some. Most of the results about idempotents, such as 4.6.2,
are due to Kaplansky [1968]; see also [Berberian 1972]. 4.2.5 is due to Sz.-Nagy;
the proof given here is taken from [Kasparov 1980b, § 6, Lemma 4].
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CHAPTER III

K0-THEORY AND ORDER

5. Basic K0-Theory

Throughout this section, A will denote a local Banach algebra. (In fact, for
much of the section A could just be any ring.)

5.1. Basic Definitions

The definition of K0(A) requires simultaneous consideration of all of the ma-
trix algebras over A. The most elegant way to do this is the following:

Definition 5.1.1. M∞(A) is the algebraic direct limit of Mn(A) under the
embeddings a→ diag(a, 0).

M∞(A) may be thought of as the algebra of all infinite matrices over A with
only finitely many nonzero entries. Whenever it is convenient, we will identify
Mn(A) with its image in the upper left-hand corner of Mn+k(A) or M∞(A).
When it is necessary to topologize M∞(A), any topology inducing the natural
topologies on Mn(A) will do. For example, M∞(A) may be given the inductive
limit topology if desired. Better yet, one may choose the norms on Mn(A) so
that the embeddings are isometries; M∞(A) is a local Banach algebra with the
induced norm.

If A is a (local) C∗-algebra, the embeddings are isometries, so M∞(A) has a
natural norm. The completion is called the stable algebra of A, denoted A ⊗ K
(it is the C∗-tensor product of A and K).

Definition 5.1.2. Proj(A) is the set of algebraic equivalence classes of idem-
potents in A. We set V (A) = Proj(M∞(A)).

There is a binary operation (orthogonal addition) on V (A): if [e], [f ] ∈ V (A),
choose e′ ∈ [e] and f ′ ∈ [f ] with e′ ⊥ f ′ (this is always possible by “moving down
the diagonal”), and define [e] + [f ] = [e′ + f ′]. This operation is well defined by
4.2.4, and makes V (A) into an abelian semigroup with identity [0].
V (A) can also be described as the set of isomorphism classes of finitely gen-

erated projective (left or right) A-modules as in 1.7. The binary operation on
V (A) corresponds to direct sum of modules.

Because of the results of Section 4, one obtains exactly the same semigroup
starting with ∼s or ∼h instead of ∼ as the equivalence, since the three notions
coincide on M∞(A). If A is a local C∗-algebra, one can restrict to projections

27
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and use ∼, ∼u, or ∼h; and one can use A⊗K in place of M∞(A). More generally,
we have V (A) ∼= V (Ā) for any local Banach algebra A.

Note. If A is a normed algebra, it is not true in general that the inclusion of A
into Ā induces an isomorphism of V (A) with V (Ā). For example, consider the
polynomials as a dense ∗-subalgebra of C([0, 1] ∪ [2, 3]). One needs some weak
type of completeness of A. It is a difficult and interesting problem, for example,
to relate the K-theory of a Banach ∗-algebra with that of its enveloping C∗-
algebra; cf. 9.4.3, 11.1.2, [Rosenberg 1984, 2.1].

V (A) depends on A only up to stable isomorphism: if M∞(A) ∼= M∞(B), or
more generally in the local C∗ case if A ⊗ K ∼= B ⊗ K, then V (A) ∼= V (B). In
particular, V (Mn(A)) ∼= V (A).

If A is separable, then V (A) is countable (4.3.2).

Examples 5.1.3. (a) V (C) ∼= V (Mn) ∼= V (K) ∼= N ∪ {0}.
(b) V (B) ∼= {0} ∪ N ∪ {∞}. If A is a II1 factor, then V (A) ∼= R+ ∪ {0}; if A

is a countably decomposable II∞ factor, then V (A) ∼= {0} ∪ R+ ∪ {∞}; if A
is a countably decomposable type III factor, then V (A) = {0,∞}. In each
case the operation is the ordinary one with ∞+ x =∞ for all x. (If A is not
countably decomposable, then V (A) will have other infinite cardinals.)

(c) If X is a compact Hausdorff space, then V (C(X)) ∼= VC(X) (1.7).
(d) If X is a connected locally compact noncompact Hausdorff space, then
V (C0(X)) = 0.

(e) Let A = {f : [0, 1] → M2 | f(0) = diag(x, 0), f(1) = diag(y, y) for some
x, y ∈ C}. Then

A+ = {f : [0, 1]→M2 | f(0) = diag(x, z), f(1) = diag(y, y) for some x, y, z ∈C}.

A contains no nonzero projections, but M2(A) contains nontrivial projections.
We have V (A) ∼= N ∪{0} and V (A+) ∼= {(m,n) ∈ Z2 | m,n ≥ 0,m+n even}.

Example 5.1.3(e) shows the necessity of considering idempotents in matrix alge-
bras over A, since unexpected idempotents sometimes appear which have nothing
to do with idempotents in A. C(S2) gives another example of this phenomenon
(1.1.2(c), 1.4.2(c)). This can even happen in simple unital C∗-algebras [Black-
adar 1981, 4.11] (but not in a factor). It turns out to be necessary for K-theory
to take such idempotents into account. Consideration of matrix algebras is more
natural if one associates idempotents with projective modules (1.7).

Example 5.1.3(b) shows that the semigroup V (A) can fail to have cancellation.
Even V (C(X)) can fail to have cancellation for certain compact differentiable
manifolds X (1.2.1(b)). We will treat cancellation in more detail in Section 6.

5.2. Properties of V (A)

5.2.1. Functoriality. If φ : A → B is a homomorphism (not necessarily
continuous!) of local Banach algebras, then φ induces a map φ∗ : Proj(A) →
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Proj(B). φ extends to a homomorphism from M∞(A) to M∞(B), which induces
a semigroup homomorphism, also denoted φ∗, from V (A) to V (B). So V is a
covariant functor from the category of local Banach algebras to the category of
abelian semigroups.

Actually, the construction of V (A) works equally well for any ring, so we get
a functor from rings to abelian semigroups.

5.2.2. Homotopy Invariance. We say two (continuous) homomorphisms
φ, ψ : A → B are homotopic if there is a path of (continuous) homomorphisms
ωt : A → B for 0 ≤ t ≤ 1, continuous in t in the topology of pointwise norm-
convergence, with ω0 = φ, ω1 = ψ. This is equivalent to the existence of a
(continuous) homomorphism ω : A → C([0, 1], B) with π0 ◦ ω = φ, π1 ◦ ω = ψ,
where πt : C([0, 1], B) → B is evaluation at t; and is the exact Banach alge-
bra analog of the ordinary notion of homotopy of continuous functions between
locally compact Hausdorff spaces.

If φ, ψ : A → B are homotopic, then φ(e) ∼h ψ(e) for any idempotent e ∈
M∞(A), and hence φ∗ = ψ∗, i.e. V is a homotopy-invariant functor.

5.2.3. Direct Sums. If A = A1 ⊕ A2, then M∞(A) = M∞(A1) ⊕M∞(A2),
and equivalence is coordinatewise; hence V (A) ∼= V (A1)⊕ V (A2).

5.2.4. Inductive Limits. If A = lim−→(Ai, φij), then V (A) is the algebraic
direct limit of (V (Ai), φij∗). This follows easily from 4.5.1 and 4.5.2.

5.3. Preliminary Definition of K0

We are tempted to define K0(A) to be the Grothendieck group (1.3) of V (A);
but it turns out that this is not the proper definition for A nonunital. It is
customary to give separate definitions of K0(A) in the unital and nonunital
cases, but we will unify the treatment.

Definition 5.3.1. K00(A) is the Grothendieck group of V (A).

K00 is a covariant functor from local Banach algebras (or even rings) to abelian
groups satisfying the properties of 5.2. Elements of K00(A) may be pictured as
formal differences [e]− [f ], where [e1]− [f1] = [e2]− [f2] if there are orthogonal
idempotents e′i, f

′
i , g in M∞(A) with e′i ∼ ei, f ′i ∼ fi, and e′1+f ′2+g ∼ e′2+f ′1+g.

Examples 5.3.2. (a) K00(C) ∼= K00(Mn) ∼= K00(K) ∼= Z.
(b) If A is a II1 factor, then K00(A) ∼= R. If A is an infinite factor, then
K00(A) = 0.

(c) K00(C(S1)) ∼= Z; K00(C(S2)) ∼= Z2.
(d) If X is connected and noncompact, then K00(C0(X)) = 0.
(e) If A is as in 5.1.3(e), then K00(A) ∼= Z, K00(A+) ∼= Z2.

5.4. Relative K-Groups

Let A be unital, J a closed two-sided ideal in A, and π : A→ A/J the quotient
map. We will define a relative K0-group K0(A, J) in analogy with the relative
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group K0(X,Y ) of topology (1.9). K0(A, J) has generators (e, f, z), where e, f
are idempotents in Mn(A) ⊆M∞(A), and z is an invertible element of Mn(A/J)
with zπ(e)z−1 = π(f); and relations

(e1, f1, z1) + (e2, f2, z2) = (diag(e1, e2),diag(f1, f2),diag(z1, z2))

and (e1, f1, z1) = (e2, f2, z2) if there are idempotents g1, g2 ∈Mk(A) and invert-
ible elements u, v ∈Mn+k(A) with

udiag(e1, g1)u−1 = diag(e2, g2),

v diag(f1, g1) v−1 = diag(f2, g2),

π(v) diag(z1, 1)π(u)−1 = diag(z2, 1).

Strictly speaking, we should write K0(A,A/J) instead of K0(A, J) to be in
complete analogy with the notation of topology; but our notation seems less
clumsy to work with.

It is not necessary to understand the relative K-group construction in full
generality for the development of K-theory; it is enough to deal with the case
where A = J+, where the details are much simpler. However, there is some
theoretical merit in the general construction, particularly in dealing with K-
theory axiomatically as a cohomology theory (22.4.3, 22.4.4).

Proposition 5.4.1. K0(A+, A) ∼= kerπ∗ ⊆ K00(A+).

Proof. It is immediate from the definition of the relative group that if (e1, f1, z1)
is equivalent to (e2, f2, z2), then [e1]− [f1] = [e2]− [f2] in K00(A), and the corre-
sponding element of K00(A) lies in kerπ∗. On the other hand, if [e]−[f ] ∈ kerπ∗,
then (e+g, f+g, z) is a generator of the relative group for some g and z, and
the element of the relative group so obtained depends only on [e] and [f ]. If
[e1]− [f1] = [e2]− [f2], we may assume (e1, f1, z1) and (e2, f2, z2) are generators,
and that e1 + f2 ∼ e2 + f1. Then, choosing g1 = e2, g2 = e1, we can find a u
and v implementing the equivalence between (e1, f1, z1) and (e2, f2, z2) except
for intertwining z1 and z2. But invertible elements in the quotient lift to A+, so
one can correct the v, f2, e1 by multiplying by the inverse of the error. �

Theorem 5.4.2. For any A and J , the natural homomorphism from K0(J+, J)
to K0(A, J) is an isomorphism.

A direct proof of this theorem is possible, but it will follow easily from the exact
sequence of K-theory. Since we will not use this theorem, we omit the details.

Theorem 5.4.2 is called the Strong Excision Theorem of K-theory. It is really
the result which allows K-theory to be developed without reference to relative
K-groups.

5.5. Definition of K0(A)

Definition 5.5.1. K0(A) = K0(A+, A).
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The conclusion of 5.4.1 may be taken as the definition of K0(A) if desired. Thus
K0(A) may be viewed as formal differences [e]− [f ], where e, f ∈M∞(A+) with
e ≡ f mod M∞(A), with the usual notion of equivalence of formal differences
in K00(A+). In fact, any element of K0(A) may be written [e] − [pn], where
pn = diag(1, . . . , 1, 0, . . .) (with n ones on the diagonal) and e ≡ pn mod M∞(A):
if n is large enough, f ≤ pn, and [e] − [f ] = [e′ + (pn − f)] − [pn], where e′ ∼ e

and e′ ⊥ pn. This is the Standard Picture of K0(A) for general A.
K0 is a covariant functor from local Banach algebras (general rings) to abelian

groups which has the properties of 5.2.

5.5.2. There is a homomorphism from K00(A+) to K0(A), given by [e]→ [e]−
[pn], where π(e) is a rank n projection in M∞(C). Composing this with the
canonical map from K00(A) to K00(A+) yields a homomorphism ωA : K00(A)→
K0(A). The map ωA is injective if V (A+) has cancellation (and perhaps in
general), but it is usually not surjective if A is nonunital.

Example 5.5.3. K0(C0(R2)) ∼= Z because of 5.3.2(c); but K00(C0(R2)) = 0.

Definition 5.5.4. A local Banach algebra A is stably unital if M∞(A) has an
approximate identity of idempotents.

If A is unital, or more generally if A has an approximate identity of idempotents,
then A is stably unital. If A is a local C∗-algebra, then A is stably unital if and
only if A⊗K has an approximate identity of projections.

Proposition 5.5.5. If A is stably unital , then ωA : K00(A) → K0(A) is an
isomorphism.

Proof. If A is stably unital, then there is a dense local Banach subalgebra
of M∞(A) which is an algebraic direct limit of unital local Banach algebras.
Since both K00 and K0 respect inductive limits, it suffices to show the result
for A unital. But then A+ ∼= A ⊕ C, so K00(A+) ∼= K00(A) ⊕ Z. The map
π∗ is projection onto the second coordinate. The image of ωA is the subgroup
K00(A)⊕ 0. �

So when A is stably unital, we may identify K0(A) with K00(A). This will be
the Standard Picture of K0(A) for A unital.

5.6. Exactness of K0

Theorem 5.6.1. If J is a (closed two-sided) ideal in A, then the sequence
K0(J) ι∗−→ K0(A) π∗−→ K0(A/J) is exact in the middle, i .e. ker(π∗) = im(ι∗).

Proof. If x ∈ K0(J), then x = [e] − [pn] for e ∈ M∞(J+) with e ≡ pn mod
M∞(J). The image of x in K0(A) is again [e]− [pn], so π∗(x) = [π(e)]− [pn] = 0.
Conversely, if [e] − [pn] ∈ kerπ∗ ⊆ K0(A) ⊆ K00(A+), then diag(π(e), pk) ∼
diag(pn, pk) in M∞((A/J)+) for some k, so for large r there is an invertible
z ∈Mr((A/J)+) with

z diag(π(e), pk, 0)z−1 = diag(pn, pk, 0).
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We can lift diag(z, z−1) to an invertible element w ∈ M2r(A+). Set f =
w diag(e, pk, 0)w−1; then π(f) = pn+k, so f ∈ M∞(J+), and [e] − [pn] =
[f ]− [pn+k] is in im ι∗. �

Theorem 5.6.1 is one of the most important reasons for working with K0 instead
of K00 in general. The corresponding statement for K00 is false. For example,
the result fails for the exact sequence 0 → C0(R2) → C(S2) → C → 0. Thus
the more complicated definition of K0 is necessary to make the desired exact
sequences work.

5.6.2. It is important to realize that an exact sequence 0 −→ J
ι−→ A

π−→
A/J −→ 0 does not yield an exact sequence 0 −→ K0(J) ι∗−→ K0(A) π∗−→
K0(A/J) −→ 0 in general, i.e. ι∗ is not always injective (for example, A =
B, J = K) and π∗ not always surjective (for example, A = C([0, 1]), J =
C0((0, 1))). The problem with π∗ is that idempotents in a quotient do not in
general lift to idempotents. The exact sequence of 5.6.1 can be expanded to a
larger exact sequence, but K1 and Bott periodicity are needed. This will be done
in Chapter IV.

5.7. EXERCISES AND PROBLEMS

5.7.1. Show that if B is a C∗-algebra, then K0(B) can be described as the set
of equivalence classes of pairs (p(0), p(1)), where the p(n) are projections in B̃⊗K
which agree mod B ⊗ K. The equivalence relation is generated by homotopy
(continuous paths (p(0)

t , p
(1)
t ) where p

(0)
t = p

(1)
t mod B ⊗ K for each t) and

orthogonal direct sum with “degenerate” elements of the form (p, p). Compare
with 12.5.1 and 17.5.4.

6. Order Structure on K0

6.1. Introduction

If A is a local Banach algebra, the semigroup V (A) really contains the infor-
mation we want about the idempotents of M∞(A); however, semigroups (partic-
ularly ones without cancellation) can be nasty algebraic objects, and for technical
reasons (e.g. 5.6.1) it is necessary to pass to the group K0(A) in order to apply
techniques from topology and homological algebra to the study of idempotents
over A. But it is desirable to keep the original semigroup in the picture as much
as possible. One way to do this is to try to put an ordering on K0(A) by taking
the image K0(A)+ of V (A) in K0(A) to be the positive cone. (Even at this point
we may lose information, since the map from V (A) into K0(A) will be injective
only if V (A) has cancellation.) Just as the elements of K0(A) determine the
(stable) equivalence of idempotents in M∞(A), the ordering will determine the
(stable) comparability of idempotents.

We also define the scale Σ(A) to be the image of Proj(A) in K0(A). If A is
unital, the scale is simply the elements of K0(A)+ which are ≤ [1A], so the scale
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can be described by simply specifying [1A], and by slight abuse of terminology
we will frequently do so. We will mostly be concerned with the unital case. The
triple (K0(A),K0(A)+,Σ(A)) is called the scaled preordered K0-group of A.

The preordered group (K0(A),K0(A)+) depends on A only up to stable iso-
morphism (5.1); but the scale gives a finer invariant, which can be used to
distinguish between algebras in the same stable isomorphism class.

If φ : A → B is a homomorphism, then φ∗ : K0(A) → K0(B) is a homomor-
phism of scaled preordered groups, i.e. φ∗(K0(A)+) ⊆ K0(B)+ and φ∗(Σ(A)) ⊆
Σ(B).

6.2. Ordered Groups

Definition 6.2.1. An ordered group (G,G+) is an abelian group G with a
distinguished subsemigroup G+ containing the identity 0, called the positive
cone of G, having these properties:

(1) G+ −G+ = G.
(2) G+ ∩ (−G+) = {0}.

G+ induces a translation-invariant partial ordering on G by y ≤ x if x−y ∈ G+.
By y < x we will mean that y ≤ x and y 6= x.

An element u ∈ G+ is called an order unit if for any x ∈ G there is an n > 0
with x ≤ nu (in other words, the order ideal [hereditary subgroup] generated by
u is all of G.) A triple (G,G+, u) consisting of an ordered group (G,G+) with a
fixed order unit u is called a scaled ordered group. We say G is a simple ordered
group if G has no proper order ideals, i.e. if every nonzero positive element is an
order unit.

Examples 6.2.2. (a) On Zn or Rn, there are two standard orderings: the
ordinary ordering, with positive cone {(x1, . . . , xn) | x1, . . . , xn ≥ 0}, and the
strict ordering, with positive cone {0} ∪ {(x1, . . . , xn) | x1, . . . , xn > 0}. These
orderings coincide for n = 1.

(b) More generally, if X is a set and G is a positively generated additive group
of real-valued functions on X, then G can be given the ordinary ordering with
G+ = {f | f ≥ 0 everywhere} or the strict ordering with G+ = {0} ∪ {f | f > 0
everywhere}. The positive cone in the strict ordering is sometimes denoted G++.
Even more generally, if ρ is a homomorphism from G into the additive group of
real-valued functions on X whose image is positively generated, then G may be
given the strict ordering from ρ, with G+ = {0}∪{a ∈ G | ρ(a) > 0 everywhere}.
There is no analog of the ordinary ordering if ρ is not injective.

(c) If ρ is a homomorphism from G into an ordered group H whose range is
positively generated, then G can be given the strict ordering from ρ by taking
G+ = {0} ∪ {x | ρ(x) > 0}.

A group G with the strict ordering in the sense of (b), or in the sense of (c) with
H simple, is a simple ordered group.
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6.3. K0(A) as an Ordered Group

6.3.1. The set K0(A)+ does not satisfy (1) of 6.2.1 in general. For example, if
A = C0(R2), then K0(A) ∼= Z and K0(A)+ = 0. However, if ωA : K00(A) →
K0(A) is surjective (in particular, if A is stably unital), then K0(A)+ does satisfy
condition (1).

From now on in this section, we will assume A is unital, and we will iden-
tify K0(A) with K00(A). Almost everything carries through (with appropriate
technical modifications) to the stably unital case.

Example 6.3.2. The set K0(A)+ does not satisfy (2) of 6.2.1 in general. Let On
be the C∗-algebra generated by n isometries s1, . . . , sn with s∗i si = 1, sis∗i = pi,
and p1 + · · ·+ pn = 1. The On were first studied by Cuntz [1977a], who showed
that up to isomorphism On is independent of the choice of the si (and is therefore
simple). In K0(On), we have [1]= [p1] = · · · = [pn], so n[1] = [p1]+· · ·+[pn] = [1],
i.e. (n − 1)[1] = 0. Thus (n − 2)[1] = −[1]. It is shown in [Cuntz 1981b] (see
10.11.8) that K0(On) ∼= Z/(n − 1), with [1] as generator, so if n > 2 then
K0(On)+ does not satisfy (2). In fact, in this case K0(On)+ = Σ(On) = K0(On).
Actually, we have K0(A)+ = Σ(A) = K0(A) whenever A is a simple unital C∗-
algebra containing a nonunitary isometry (6.11.8).

Recall that a local Banach algebra A is finite if e ≤ f, e ∼ f implies e = f .
If A is unital, this is equivalent to the property that no proper idempotent is
algebraically equivalent to 1; if A is a unital local C∗-algebra, A is finite if and
only if every isometry in A is unitary. A is stably finite if Mn(A) is finite for
all n. Not every finite C∗-algebra is stably finite (6.10.1); it is an open question
whether every finite simple C∗-algebra is stably finite.

Proposition 6.3.3. If A is stably finite, then (K0(A),K0(A)+) is an ordered
group.

Proof. We must show K0(A)+ satisfies (2). If [e]− [f ] and [f ]− [e] are both in
K0(A)+, then [e]− [f ] = [g], [f ]− [e] = [h], so [e] = [f ] + [g] = [e] + [h] + [g], so
there are orthogonal representatives e′, h′, g′, k′ with e′ + k′ ∼ e′ + h′ + g′ + k′,
so g′ = h′ = 0, [e]− [f ] = 0. �

Examples 6.3.4. (a) The ordering on K0(C) and K0(Mn) is the ordinary
ordering on Z. Σ(Mn) = {0, . . . , n}.

(b) If A is a II1 factor, then the ordering on K0(A) is the ordinary ordering on
R, and Σ(A) = [0, 1].

(c) If A = C2, then K0(A) ∼= Z2 with the ordinary ordering. Σ(A) = {(0, 0),
(0, 1), (1, 0), (1, 1)}.

(d) K0(C(S2)) is Z2 with the strict ordering from the first coordinate, i.e.
K0(C(S2))+ = {(0, 0)} ∪ {(m,n) | m > 0}. Σ(C(S2)) = {(0, 0), (1, 0)}.

(e) If A+ is as in 5.1.3(e), then K0(A+) = {(m,n) |m,n ∈ Z,m+ n even} ∼= Z2

and K0(A+)+ = {(m,n) | m,n ≥ 0,m+ n even}. Σ(A+) = {(0, 0), (1, 1)}.
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Examples (c), (d), and (e) show that K0(A) and K0(B) can be isomorphic as
groups without being isomorphic as ordered groups. Thus the order structure
can be used to distinguish between algebras.
K0(A) is frequently a simple ordered group:

Proposition 6.3.5. If A is stably finite, and every nonzero idempotent in
M∞(A) is full (not contained in any proper two-sided ideal), then K0(A) is a
simple ordered group.

Proof. [Cuntz 1977b] Let e and f be idempotents in Mn(A), with f 6= 0. Then
e is in the ideal of Mn(A) generated algebraically by f , i.e. there are elements
x1, . . . , xk, y1, . . . , yk ∈Mn(A) with e =

∑k
i=1 xifyi. We may assume xi = exif

and yi = fyie for all i. Set

X =


x1 . . . xk
0 0
. . . . . . . . .

0 0

, Y =

 y1 0 0
. . . . . . . . . . . .

yk 0 0

,
E = diag(e, 0, . . . , 0), F = diag(f, f, . . . , f) in Mk(Mn(A)). Then E = XFY =
EXFY E. Set G = FY EXF . Then G is an idempotent since

G2 = FY EXFFY EXF = FY (EXFY E)XF = FY EXF = G,

and G is equivalent to E via EXF and FY E. F is a unit for G, so G ≤ F .
Thus [e] ≤ k[f ] in K0(A). �

Corollary 6.3.6. If A is a stably finite C∗-algebra and Prim(A) contains no
nontrivial compact open subsets, then K0(A) is a simple ordered group. So if
Prim(A) is Hausdorff and connected , K0(A) is simple. In particular , if A is
simple or if A = C(X), X connected , then K0(A) is simple.

Proof. If p is a nonzero projection in Mn(A), write πJ : Mn(A) → Mn(A)/J
for J ∈ Prim(Mn(A)) ∼= Prim(A). Then {J ∈ Prim(Mn(A)) : πJ(p) 6= 0} =
{J ∈ Prim(Mn(A)) : ‖πJ(p)‖ ≥ 1} is a compact open set in Prim(Mn(A)) by
[Dixmier 1969, 3.3.2 and 3.3.7]. �

6.3.7. The order structure on K0 seems to have played only a minimal role in
topological K-theory; the order on K0(C(X)) is usually either rather trivial or
else badly behaved (6.10.2). But the ordering is crucial in many of the applica-
tions of K-theory to C∗-algebras, particularly to the structure of AF algebras.
The significance of the ordering is partial compensation for the absence (so far) in
noncommutative K-theory of additional algebraic structure, such as the product
and exterior power operations, which are very important in topological K-theory
(1.7.5).
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6.4. Cancellation

We say that A has cancellation of idempotents if, whenever e, f, g, h are idem-
potents in A with e ⊥ g, f ⊥ h, e ∼ f, e + g ∼ f + h, then g ∼ h. A has
cancellation if Mn(A) has cancellation of idempotents for all n. A has cancella-
tion if and only if the semigroup V (A) has cancellation.

Proposition 6.4.1. Let A be a unital local Banach algebra. Then the following
conditions are equivalent :

(1) A has cancellation of idempotents.
(2) If e ∼ f , then 1− e ∼ 1− f .
(3) If e ∼ f , then e ∼s f .

Proof. (2)⇐⇒ (3) is 4.2.5. (1) =⇒ (2): Take g = 1−e, h = 1−f . (2) =⇒ (1):
If e, f, g, h are as in the definition of cancellation, we have 1− e− g ∼ 1− f − h;
so by 4.2.4 we have 1− g = (1− e− g) + e ∼ (1− f − h) + f = 1− h. So again
by (2) g ∼ h. �

So a local Banach algebra with cancellation must be stably finite. There are many
stably finite C∗-algebras which do not have cancellation (e.g. some commutative
C∗-algebras). It is still an open question whether every stably finite simple
(unital) C∗-algebra has cancellation, but the examples of Villadsen [1995; 1997]
suggest that there are ones that do not.

6.5. Stable Rank

Cancellation is related to stable rank. A complete discussion of Bass’ stable
rank and Rieffel’s topological stable rank (shown to coincide for C∗-algebras in
[Herman and Vaserstein 1984]) is beyond the scope of these notes; see [Rieffel
1983b] for a complete treatment, or [Blackadar 1983a] for a survey. We will
mention only the simplest case, of stable rank 1.

We say that A has stable rank 1, written sr(A) = 1, if the invertible elements
of A are dense in A. It can be shown [Rieffel 1983b, 3.3] that sr(A) = 1 if and
only if sr(Mn(A)) = 1 for some (hence all) n. If sr(A) = 1, then A is stably
finite.

Proposition 6.5.1. Let A be a unital local C∗-algebra with sr(A) = 1. Then A

has cancellation.

Proof. Suppose p ∼ q. Let u∗u = p, uu∗ = q. Approximate u closely by an
invertible element x, and write x = v(x∗x)1/2, with v unitary. Then x∗x ≈ p, so
vpv∗ ≈ v(x∗x)v∗ = xx∗ ≈ q, so p ∼u vpv∗ ∼u q. �

There is a partial converse to 6.5.1. Recall that a local C∗-algebra A has the
(HP) property if every hereditary ∗-subalgebra of A has an approximate identity
of projections.

Proposition 6.5.2. If A is a local C∗-algebra with (HP) and cancellation of
idempotents, then sr(A) = 1.
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Definition 6.5.3. An element x of a C∗-algebra A is well-supported if there is
a projection p ∈ A with x = xp and x∗x invertible in pAp.

An element x is well-supported if and only if either x∗x is invertible or 0 is an
isolated point of the spectrum σ(x∗x), i.e. if and only if σ(x∗x) ⊆ {0}∪ [ε,∞) for
some ε > 0. So x is well-supported if and only if x∗ is well-supported. Invertible
elements and partial isometries are well-supported.

If x is well-supported, then x can be written as ua, where u is a partial
isometry with u∗u = p and a is an invertible positive element of pAp. q = uu∗

is a left support projection for x, and xx∗ is invertible in qAq.

Proposition 6.5.4. If A has (HP) and p and q are projections of A, then the
well-supported elements of qAp are dense in qAp.

Proof. Let x ∈ qAp. Let r be a projection in x∗Ax which is almost a unit for
(x∗x)1/2, and set y = xr. Then y ∈ qAr ⊆ qAp, and since r ≤ n(x∗x) for some
sufficiently large n, y∗y = rx∗xr ≤ (1/n)r, so y∗y is invertible in rAr. Thus y is
well-supported, and closely approximates x. �

Proposition 6.5.5. If A is a C∗-algebra, then A has cancellation if and only
if the invertible elements of Mn(A) are dense in the well-supported elements of
Mn(A) for all n.

Proof. Because of polar decomposition and the fact that invertible positive
elements are dense in A+, the invertible elements are dense in the well-supported
elements if and only if every partial isometry can be arbitrarily approximated
by invertibles. If A has cancellation and u is a partial isometry in Mn(A), set
p = u∗u, q = uu∗. By cancellation there is a partial isometry v with v∗v =
1Mn(A)− p, vv∗ = 1Mn(A)− q; then u+ εv is an invertible closely approximating
u. Conversely, suppose p ∼ q, and let u be a partial isometry in Mn(A) with
u∗u = p, uu∗ = q. Approximate u closely by an invertible element x, and write
x = v(x∗x)1/2. Then v is unitary, and vpv∗ ≈ v(x∗x)v∗ = xx∗ ≈ q, so p is
unitarily equivalent to a projection close to q and hence also unitarily equivalent
to q. �

Proof of 6.5.2. By 6.5.4 with p = q = 1 the well-supported elements are
dense in A. Apply 6.5.5. To pass to matrix algebras use the fact that sr(A) = 1
implies sr(Mn(A)) = 1. �

There are some other characterizations of (HP), which underscore the importance
and naturality of the axiom:

Theorem 6.5.6. Let A be a C∗-algebra. Then the following are equivalent :

(1) A has (HP).
(2) The well-supported self-adjoint elements of A are dense in Asa.
(3) A has real rank zero: the invertible self-adjoint elements of A are dense in
Asa.
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(4) A has (FS ): the self-adjoint elements of A of finite spectrum are dense in
Asa.

Outline of proof. (1) =⇒ (2) is almost identical to the proof of 6.5.4: if x is
self-adjoint and r is a projection in xAx which is an approximate unit for x∗x,
then rxr is a well-supported self-adjoint element closely approximating x.

(2) =⇒ (3): if x is well-supported, then x+ λ1 is invertible for all sufficiently
small nonzero λ.

(3) =⇒ (4): suppose x = x∗ is given. We may assume 0 ≤ x ≤ 1. Let
{λ1, λ2, . . .} be the rationals in [0, 1]. Set x1 = x. For each n, let yn be
a well-supported self-adjoint element closely approximating xn − λn1, and set
xn+1 = yn + λn1. Then xn approximates x and its spectrum has gaps around
λ1, . . . , λn; the approximate to x with finite spectrum can then be made from
xn by functional calculus.

(4) =⇒ (1) is the trickiest part; see [Pedersen 1980]. �

Corollary 6.5.7. Let A be a C∗-algebra with (HP). Then A has cancellation
if and only if sr(A) = 1.

There is a theory of real rank for C∗-algebras, developed by Brown and Pedersen
[1991], which formally resembles the theory of stable rank. The use of the term
“real rank zero” for the condition in (3) comes from this theory.

It is obvious that (FS) is preserved in inductive limits, and it is not hard to
show that real rank zero passes to matrix algebras. (HP) obviously passes to
hereditary subalgebras.

Until recently, no stably finite simple C∗-algebra was known to have stable
rank greater than 1. Examples have recently been constructed by Villadsen
[1997].

The exact general relationship between stable rank and cancellation is not
known. There are some significant generalizations of 6.5.1, however; see [Rieffel
1983a] and [Blackadar 1983b].

Cancellation questions are part of what is known as nonstable K-theory, which
is concerned with relating the K-theory data of A (which is “stable” data) to
the actual structure of A. See [Husemoller 1966, Chapter 8] and [Rieffel 1983b]
for a further discussion of questions from nonstable K-theory.

6.6. Classification of Stably Isomorphic C∗-Algebras

Suppose that A is a unital C∗-algebra with cancellation. Then the scale Σ(A)
is a hereditary subset of K0(A)+; in fact, Σ(A) is the closed interval [0, [1A]] =
{x ∈ K0(A)+ | x ≤ [1A]}. Although Σ(A) does not always generate K0(A) as a
group (6.3.4(d), or, for a simple example, [Blackadar 1981, 4.11]), [1A] is always
an order unit, so the order ideal generated by Σ(A) is K0(A). If B is a unital
C∗-algebra stably isomorphic to A, then K0(B) is order-isomorphic to K0(A),
and the image of Σ(B) in K0(A) will be an interval [0, u] for some order unit
u. Conversely, if u is an order unit in K0(A), then there is a unital C∗-algebra
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B stably isomorphic to A with Σ(B) = [0, u]: let u = [p] for some projection
p ∈ Mn(A), and take B = pMn(A)p. So one can nearly classify all unital C∗-
algebras stably isomorphic to A by the order units in K0(A). The correspondence
is, however, not one-to-one in general: the algebras corresponding to u and v

may be isomorphic if there is an order-automorphism of K0(A) taking u to v.
(But the existence of such an order-automorphism does not guarantee that the
algebras are isomorphic; not every order-automorphism of K0(A) is induced from
an isomorphism on the algebra level in general.)

One can extend the above classification to certain nonunital C∗-algebras as
follows. If u1, u2, . . . is an increasing sequence of elements of K0(A)+, then one
can find an increasing sequence of projections p1, p2, . . . in A⊗K with [pn] = un.
If {u1, u2, . . . } generates K0(A)+ as an order ideal, then the C∗-algebra B =(⋃

pn(A ⊗ K)pn
)− is stably isomorphic to A and corresponds naturally to the

interval
⋃

[0, un] ⊆ K0(A). A hereditary subset Σ of K0(A)+ is of this form if and
only if it generates G as an order ideal and is countably generated and upward
directed, i.e. if x, y ∈ Σ there is a z ∈ Σ with x ≤ z and y ≤ z. The C∗-algebra
corresponding to Σ by the above construction depends up to isomorphism only
on Σ and not on the choice of the un or pn. Conversely, every C∗-algebra which
is stably isomorphic to A and which has an approximate identity consisting of
a sequence of projections is obtained in this way. So if A is separable with
(HP) [i.e. with real rank zero], one obtains a complete classification (modulo the
possible identifications through order-automorphisms).

6.7. Perforation

One difficulty which can occur in ordered groups is perforation.

Definition 6.7.1. An ordered group (G,G+) is unperforated if nx ≥ 0 for some
n > 0 implies x ≥ 0; G is weakly unperforated if nx > 0 for some n > 0 implies
x > 0.

An unperforated group must be torsion-free. A weakly unperforated group can
have torsion: for example, Z ⊕Z2 with strict ordering from the first coordinate.
If (G,G+) is weakly unperforated, H is the torsion subgroup of G, and π :
G → G/H the quotient map, then (G/H, π(G+)) is an unperforated ordered
group. Hence a weakly unperforated group is “unperforated up to torsion.”
Conversely, if (K,K+) is a (weakly) unperforated ordered group and ρ : G→ K is
a homomorphism with positively generated image, then G is weakly unperforated
if given the strict ordering from ρ. A weakly unperforated group is unperforated
if and only if it is torsion-free.

Examples 6.7.2. (a) Let G = Z, G+ = {0}∪{n | n ≥ 2}. Then (G,G+) is not
weakly unperforated.

(b) K0(C(RP2)) = Z⊕Z2 with strict ordering from the first coordinate [Karoubi
1978, IV.6.47]. K0(C(T4)) ∼= Z8 is perforated, where T4 is the 4-torus
(6.10.2). There are stably finite simple unital C∗-algebras A with torsion
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in K0(A) (10.11.2). There are even stably finite simple C∗-algebras whose K0

is not weakly unperforated [Villadsen 1995] (cf. 6.10.2(d)).
(c) Perforation in K0 can be eliminated by “rationalizing”: if R is the (unique)

UHF algebra withK0(R) = Q, then for any A we haveK0(A⊗R) ∼= K0(A)⊗Q
with K0(A⊗R)+ = K0(A)+ ⊗Q+, and K0(A⊗R) is unperforated.

6.8. States on Ordered Groups

The order structure on an ordered group is at least partially (and in good
cases completely) determined by the states, which in the K0 case are closely
related to the tracial states on the algebra.

Definition 6.8.1. A state on a scaled ordered group (G,G+, u) is an order-
preserving homomorphism f from G to R with f(u) = 1.

The set S(G,G+, u) (or just denoted S(G) when there is no confusion) of all
states on (G,G+, u) is a compact convex set in the topology of pointwise con-
vergence. S(G) is called the state space of G.

We now develop some properties of S(G) due to Goodearl and Handelman
[1976], including a Hahn–Banach type existence theorem.

Lemma 6.8.2. Let (G,G+, u) be a scaled ordered group. Let H be a subgroup of
G containing u, and f a state on (H,H ∩ G+, u) (note we do not assume H is
positively generated). Let t ∈ G+, and p = sup{f(x)/m | x ∈ H,m > 0, x ≤ mt},
q = inf{f(y)/n | y ∈ H,n > 0, nt ≤ y}. Then:

(a) 0 ≤ p ≤ q <∞.
(b) If g is a state on (H + Zt, u) which extends f , then p ≤ g(t) ≤ q.
(c) If p ≤ r ≤ q, then there is a unique state g on (H + Zt, u) which extends f

with g(t) = r.

Proof. (a) Clearly p ≥ 0. Next, t ≤ ku for some k > 0, so q ≤ f(ku)/1 = k <

∞. If x, y ∈ H and m,n > 0 with x ≤ mt and nt ≤ y, then nx ≤ mnt ≤ my, so
nf(x) ≤ mf(y), so f(x)/m ≤ f(y)/n, and thus p ≤ q.
(b) If x ∈ H, m > 0, and x ≤ mt, then f(x) = g(x) ≤ mg(t) and so f(x)/m ≤
g(t). Thus p ≤ g(t). Similarly, g(t) ≤ q.
(c) The formula for g, if it exists, must be g(z+kt) = f(z)+kr for z ∈ H, k ∈ Z,
so we must show this function is well defined and order-preserving. It suffices
to show that z + kt ≥ 0 (for z ∈ H and k ∈ Z) implies f(z) + kr ≥ 0. This is
obvious if k = 0. If k > 0, then −z ≤ kt, so f(−z)/k ≤ p ≤ r. If k < 0, then
−kt ≤ z, so r ≤ q ≤ f(z)/(−k). �

Theorem 6.8.3. Let (G,G+, u) be a scaled ordered group, and let H be a
subgroup of G containing u. If f is any state on (H,H ∩G+, u), then f extends
to a state on (G,G+, u).

Proof. This follows from 6.8.2 by a straightforward Zorn’s Lemma argument.
�
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Corollary 6.8.4. Let (G,G+, u) be a scaled ordered group, and let t ∈ G+.
Let f∗(t) = p, f∗(t) = q defined as in 6.8.2 with H = Zu. Then:

(a) 0 ≤ f∗(t) ≤ f∗(t) <∞.
(b) If f is any state on G, then f∗(t) ≤ f(t) ≤ f∗(t).
(c) If f∗(t) ≤ r ≤ f∗(t), then there is a state g on G with g(t) = r.

f∗(t) and f∗(t) can be more elegantly described as sup{n/m | nu ≤ mt} and
inf{n/m | mt ≤ nu} respectively.

Theorem 6.8.5. Let (G,G+, u) be a simple weakly unperforated scaled ordered
group. Then G has the strict ordering from its states, i .e. G+ = {0} ∪ {x |
f(x) > 0 for all f ∈ S(G)}.

Proof. If x > 0, then x is an order unit, so u ≤ mx for some m > 0. Then
0 < 1/m ≤ f∗(x), so f(x) > 0 for all f ∈ S(G). Conversely, suppose f(x) > 0
for all f ∈ S(G). By compactness, we have f∗(x) = inff∈S(G) f(x) > 0, so
there are positive integers n and m with 0 < nu ≤ mx, and therefore by weak
unperforation x > 0. (Note that this implication does not require G to be
simple.) �

There is an alternate way to view 6.8.5. If x ∈ G, then x induces a continuous
affine function x̂ on S(G) by x̂(f) = f(x). Thus there is a homomorphism ρ from
G to Aff(S(G)), the group of all continuous real-valued affine functions on S(G).
6.8.5 then says that G has the strict ordering from ρ, in the sense of 6.2.2(b).

6.9. Dimension Functions and States on K0(A)

It is easy to identify at least some (in fact, all) of the states on (K0(A),
K0(A)+, [1A]). If τ is a tracial state on A, or more generally a quasitrace on A

(a function from M∞(A) to C which is linear on commutative subalgebras and
satisfies 0 ≤ τ(x∗x) = τ(xx∗) for all x), then τ induces a state on K0(A) in
an obvious way. Let T (A) and QT (A) denote respectively the tracial states and
normalized quasitraces on A. We have T (A) ⊆ QT (A); it is a very important and
difficult question whether T (A) = QT (A) for all A. (In a remarkable advance,
Haagerup [1992] has shown that a quasitrace on an exact [e.g. nuclear] C∗-algebra
must be a trace.) It is at least true that QT (A), like T (A), is always a Choquet
simplex, which is metrizable if A is separable [Blackadar and Handelman 1982,
II.4.4]. For the ordering on K0(A) the set QT (A) is the more natural and
important set to consider, due to the fact that the quasitraces on A are in one-
one correspondence with the lower semicontinuous dimension functions on A.

A dimension function on A is a function D : M∞(A) → [0,∞) such that
D(1) = 1, D(a) ≤ D(b) whenever there are sequences xn, yn with xnbyn → a,
and D(a + b) = D(a) + D(b) whenever a ⊥ b. One can construct an ordered
group K∗0 (A) (called D(A) in [Cuntz 1982a]) whose states are exactly the di-
mension functions on A [Cuntz 1978]. K∗0 (A) is constructed in a manner very
similar to K0(A) except that one starts with all elements of M∞(A), not just the
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projections; roughly, one pretends that each element has a well-defined (left or
right) support projection, and then K∗0 (A) is the Grothendieck group of the set
of stable equivalence classes of these “support projections”. Since a dimension
function on A measures the “size” of the “support projections” of the elements
of A, the correspondence between dimension functions and states of K∗0 (A) is
natural.

The correspondence described above gives a continuous affine map

χ : QT (A)→ S = S(K0(A)).

This map is not injective in general. For example, if A = C(S1), then QT (A) =
T (A) is the state space of A, while S is a singleton. Also, if A = C∗(Z2 ∗ Z2)
(6.10.4), then S is a square and not even a simplex. There is a simple (unital,
stably finite) C∗-algebra A for which χ is not injective [Blackadar and Kumjian
1985].

The map χ is always surjective [Blackadar and Rørdam 1992]. In other words,
if A is any C∗-algebra, then every state on K0(A) comes from a quasitrace on
A; if A is nuclear (or exact), then every state on K0(A) comes from a tracial
state. Thus there are enough tracial states on A to completely determine the
order structure on K0(A) (up to perforation).

The following results were proved in [Blackadar and Handelman 1982, III]:

Theorem 6.9.1. If A is a stably finite unital C∗-algebra with real rank zero,
then χ is a bijection, hence a homeomorphism.

Corollary 6.9.2. If A is a stably finite simple unital C∗-algebra with real rank
zero, such that K0(A) is weakly unperforated , then the state space of K0(A) is
the simplex QT (A), and K0(A) has the strict ordering induced from ρ : K0(A)→
Aff(QT (A)), i .e. [p] < [q] if and only if τ(p) < τ(q) for every quasitrace τ . If A
has cancellation, and p and q are projections in M∞(A) with τ(p) < τ(q) for all
τ , then p � q (p is equivalent to a subprojection of q).

It is not true that τ(p) ≤ τ(q) for all τ implies p � q, even in a simple unital AF
algebra (7.6).

Theorem 6.9.3. Let A be simple, unital , stably finite, with real rank zero
and cancellation, and with K0(A) weakly unperforated . Then the range of ρ :
K0(A)→ Aff(QT (A)) is uniformly dense.

6.10. EXERCISES AND PROBLEMS

6.10.1. There is a finite unital C∗-algebra which is not stably finite. Let A =
τ(S3) be the Toeplitz algebra on the unit ball of C2 [Coburn 1973/74]. Then A
is an extension of C(S3) by K. Since π1(S3) ∼= π3(S1) = 0 [Spanier 1966, 7.2.12],
the unitary group of C(S3) is connected. Every isometry in A has unitary image
in C(S3), hence has index 0, i.e. A contains no nonunitary isometries. But M2(A)
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does contain a nonunitary isometry; in fact, the image of the multiplication
operator with symbol

f(z, w) =
[
z −w̄
w z̄

]
is a Fredholm operator of nonzero index.

This example works because, although K1(C(S3)) is nontrivial, the nontrivial
elements first appear in the 2× 2 matrix algebra.

By considering the Toeplitz algebra on the unit ball of Cn, one can make the
nonunitary isometries first appear in the n× n matrix algebra.

Although M2(A) is infinite, it is in some sense “not very infinite” (for example,
it is type I, an extension of a finite homogeneous C∗-algebra by K). A C∗-algebra
like this, or the usual Toeplitz algebra (9.4.2), might be called “poorly infinite.”
An infinite simple unital C∗-algebra must be “much more infinite” (or properly
infinite: see 6.11).

This example was independently obtained by N. Clarke [1986] and the author
[Blackadar 1983a].

M. Rørdam [1998] has recently constructed an example of a finite unital C∗-
algebra A for which M2(A) is properly infinite (6.11.1).

6.10.2. (a) If T4 is the 4-torus, then the ring K∗(C(T4)) can be identified with
the exterior algebra with four generators e1, . . . , e4 over Z, as in [Elliott 1984].
K0 corresponds to the terms with even degree. Line bundles correspond to the
positive elements with constant term 1. The exterior product corresponds to
tensor product of bundles, and the sum in the exterior algebra corresponds to
Whitney sum.

(b) The element (1 + e1 ∧ e2)(1 + e3 ∧ e4) is positive, being the product of two
line bundles [note that (1 + e1 ∧ e2) is the pullback of the standard nontrivial
line bundle on T2 to T4 = T2 × T2 via projection onto the first coordinate].
Similarly (1− e1 ∧ e2), etc., are positive. So

2 + 2e1 ∧ e2 ∧ e3 ∧ e4 = (1 + e1 ∧ e2)(1 + e3 ∧ e4) + (1− e1 ∧ e2)(1− e3 ∧ e4)

is positive. But 1 + e1 ∧ e2 ∧ e3 ∧ e4 is not positive, since if it were it would
correspond to a line bundle. But a line bundle is completely determined by its
second-order terms (the Chern character implies that every line bundle is of the
form 1 + v + 1

2v ∧ v for some v in the second exterior power); the only line
bundle with zero second-order terms is the trivial bundle. Thus K0(C(T4)) is
not weakly unperforated.

(c) Show by direct calculation that any element of K0 of constant term at least 3
can be written as a sum of line bundles and is therefore positive. Conclude from
[Husemoller 1966, 8.1.2] that every element of constant term 2 is also positive,
although such an element cannot in general be written as a sum of line bundles.
Characterize which elements of constant term 1 come from line bundles. Show
that this implies that K0 has a unique state (cf. 6.10.3).
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(d) Generalize these results to Tn for n > 4. Specifically, show that k +
e1 ∧ · · · ∧ e2m ≥ 0 if and only if k ≥ m [Villadsen 1995]. This was the key tech-
nical tool in Villadsen’s construction of a stably finite simple unital C∗-algebra
A in which K0(A) is not weakly unperforated [Villadsen 1995].

This example is due to G. Elliott and the author (with (c) due to Rieffel [1988]),
although the result may be known to topologists.

6.10.3. Let X be a connected compact Hausdorff space.

(a) All states (traces) on C(X) induce the same state on K0(C(X)), the one
which assigns to each vector bundle its dimension. This state is called the geo-
metric state on K0(C(X)).

(b) If X has finite dimension d, set s = dd/2e. Then, for any r, by [Husemoller
1966, 8.1.2] every vector bundle of dimension at least r + s contains a trivial
bundle of dimension r as a summand.

(c) With notation as in (b), let V be an n-dimensional bundle over X, and
let W be a bundle of dimension at least s such that V ⊕W is trivial. Write
W = W1 ⊕W2, with W1 s-dimensional and W2 trivial. Thus V ⊕W1 ⊕W2 is
trivial, so V ⊕W1 is trivial by [Husemoller 1966, 8.1.5] since it has dimension at
least s. Thus V can be embedded in a trivial bundle of dimension at most n+ s.

(d) Combining (b) and (c), if X is d-dimensional and V and W are vector
bundles over X of dimension n and m respectively, with m− n ≥ 2s, then V is
isomorphic to a subbundle of W . So if f is the geometric state on K0(C(X)),
and x ∈ K0(C(X)) with f(x) ≥ 2s, then x ≥ 0. Conclude from 6.8.4 that f is
the only state on K0(C(X)).

(e) A general X can be written X = lim←−Xi, where Xi is a finite complex
[Eilenberg and Steenrod 1952, X.10.1], so K0(C(X)) = lim−→K0(C(Xi)) as an
ordered group; hence the geometric state is the only state onK0(C(X)) in general
(for X connected).

(f) Even though K0(C(X)) is simple for X connected (6.3.6), it may be perfo-
rated (6.10.2), and so may not have the strict ordering from its (unique) state
(cf. 6.8.5).

(g) Use a similar argument to show that if X is not connected, it is still true
that every state on K0(C(X)) comes from a state (trace) on C(X), and hence
the map χ : QT (A) → S(K0(A)) of 6.9 is always surjective for A commutative.
If X is not connected, then K0(C(X)) no longer has a unique state (there is one
extremal state for each connected component).

This result is due to A. Sheu and the author (possibly known to topologists).
The result also follows from [Blackadar and Rørdam 1992].

6.10.4. Let A = {f : [0, 1] → M2 | f(0), f(1) are diagonal}. Then A ∼=
C∗(Z2 ∗ Z2), the group C∗-algebra of the free product of Z2 with itself. A

is also the universal unital C∗-algebra generated by two projections. There
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are four equivalence classes of minimal projections in A, corresponding to pij
(i, j = 0, 1), where pij(0) = diag(1−i, i), pij(1) = diag(1−j, j). We have
[p00] + [p11] = [p10] + [p01]. K0(A) ∼= Z4/〈(1, 1,−1,−1)〉 ∼= Z3, with K0(A)+

the monoid generated by (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, -1). The state
space of K0(A) is a square.

By doing an inductive construction using these algebras, a simple unital C∗-
algebra can be constructed whose state space is a square [Elliott 1996].

6.10.5. Let A be the Choi algebra C∗r (Z2 ∗ Z3) [Choi 1979]. A is a stably
finite simple unital C∗-algebra. It is shown in [Cuntz 1983b] (cf. 10.11.11) that
K0(A) ∼= Z5/〈(1, 1,−1,−1,−1)〉, with the spectral projections of the finite-order
unitaries as generators and the one obvious relation. Since A has a unique trace,
there is one obvious corresponding state f0 on K0(A). Each of the generators is
in K0(A)+, and f0 takes the value 1/2 on the first two, 1/3 on the last three. One
could more generally consider C∗r (Z∗nZm) for n,m ≥ 2, n+m ≥ 5, or even more
generally reduced free products of finite-dimensional commutative C∗-algebras.

These algebras were studied in [Anderson et al. 1991] with partial results about
the order structure on K0; complete results were then obtained in [Dykema and
Rørdam 1998]:

(a) f0 is the only state on K0(A).
(b) K0(A) is unperforated. Thus K0(A) has the strict ordering from f0, i.e. for
x ∈ K0(A), x > 0 if and only if f0(x) > 0.

(c) A has stable rank 1 and hence cancellation. Thus, for example, if p is a
projection of trace 1/2 and q a projection of trace 1/3, then q � p and
p � q ⊕ q.

6.11. Properly Infinite C∗-Algebras

In stark contrast to the stably finite C∗-algebras are the properly infinite ones.
In this section, we develop ordered K-theory type results for these algebras; these
results are due to Cuntz [1981b].

Definition 6.11.1. A unital C∗-algebra is properly infinite if it contains two
orthogonal projections equivalent to the identity (i.e. it contains two isometries
with mutually orthogonal range projections).

Proposition 6.11.2. Let A be a unital C∗-algebra. Then A is properly infinite
if and only if A contains a sequence of isometries with mutually orthogonal range
projections (i .e. A contains a unital copy of O∞ (10.11.8)).

Proof. Let s1, s2 be isometries in A with orthogonal ranges. Then the isome-
tries {sn2 s1 : n ≥ 0} have mutually orthogonal ranges. �

A properly infinite C∗-algebra is infinite, but an infinite C∗-algebra need not be
properly infinite (6.10.1, 9.4.2). Any quotient of a properly infinite C∗-algebra
is properly infinite.



46 III. K0-THEORY AND ORDER

Proposition 6.11.3. Let A be a simple unital C∗-algebra. Then the following
conditions are equivalent :

(i) A is infinite.
(ii) A is properly infinite.
(iii) A contains a sequence of mutually orthogonal equivalent nonzero projec-

tions.

Proof. (ii) =⇒ (i) is trivial.
(i) =⇒ (iii): If s is a proper isometry in A, and p = 1− ss∗, then 〈snps∗n〉 is

a sequence of mutually orthogonal equivalent nonzero projections.
(iii) =⇒ (ii): Let 〈pn〉 be a sequence of mutually orthogonal nonzero equivalent

projections. Let p = p1, and un a partial isometry with u∗nun = p and unu∗n = pn
for each n; so p = u∗npnun. Then there are elements xi with 1 =

∑n
i=1 x

∗
i pxi =∑n

i=1 x
∗
i u
∗
i piuixi for some n. If q =

∑n
i=1 pi and v =

∑n
1=1 uixi, then 1 = v∗qv,

so qv is an isometry with range projection qvv∗q ≤ q. Similarly, there is a
projection equivalent to 1 under

∑(k+1)n
i=kn+1 pi for every k. �

There is an even stronger notion of infiniteness:

Definition 6.11.4. A unital C∗-algebra A is purely infinite if A 6= C and, for
every nonzero a ∈ A, there are x, y ∈ A with xay = 1.

A purely infinite C∗-algebra is obviously simple. A corner in a purely infinite
C∗-algebra is clearly purely infinite. If A is purely infinite, then any matrix
algebra over A is isomorphic to a corner in A, and hence is also purely infinite.

Examples of purely infinite C∗-algebras are (countably decomposable) type III
factors, the Calkin algebra, the Cuntz algebras (6.3.2, 10.11.8), and the simple
Cuntz–Krieger algebras (10.11.9).

Proposition 6.11.5. If A is a simple unital C∗-algebra, then A is purely
infinite if and only if every nonzero hereditary C∗-subalgebra of A contains an
infinite projection. In particular , every nonzero projection in a purely infinite
C∗-algebra is infinite.

Proof. Let B be a nonzero hereditary C∗-subalgebra of A, and 0 ≤ b ∈ B a
nonzero positive element. Find x, y ∈ A with xby = 1. Then 1 = y∗bx∗xby. If
u = (bx∗xb)1/2y, then u is an isometry, and uu∗ is a projection in B which is
equivalent to 1 and hence infinite.

Conversely, let a be a nonzero element of A, and B the hereditary C∗-
subalgebra generated by fε(a∗a) for ε small enough that fε(a∗a) 6= 0, where
fε is the continuous function that takes the value 0 on (−∞, ε/2] and the value 1
on [ε,∞), and is linear on [ε/2, ε]. Let u be an isometry in A with p = uu∗ ∈ B.
Then a∗a ≥ (ε/2)p, so z = u∗a∗au is invertible, and z−1u∗a∗au = 1. �

Question 6.11.6. Is every infinite simple unital C∗-algebra purely infinite?
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Call a projection in a unital C∗-algebra very full if it contains a subprojection
equivalent to the identity. Any projection equivalent to a very full projection is
very full. If A is simple, then a nontrivial projection in A is very full if and only
if it is infinite (see the proof of 6.11.3).

Theorem 6.11.7. Let A be a properly infinite unital C∗-algebra, and Vf (A) the
subset of V (A) consisting of the equivalence classes of very full projections of A.
Then:

(a) Vf (A) is a subsemigroup of V (A).
(b) Vf (A) is a group (with a different identity element than V (A)).
(c) The homomorphism from V (A) to K0(A) induces an isomorphism from
Vf (A) onto K0(A).

Proof. (a) Since A contains a sequence of mutually orthogonal projections
equivalent to the identity, it follows easily that every projection in M∞(A) is
equivalent to a projection in A. So if p and q are very full projections in A, then
p⊕ q is equivalent to a projection in A, which is very full since it contains a copy
of p. Thus Vf (A) is a subsemigroup.

(b) Notice first that if p and q are projections in A with p very full, then
q ∼ q′ ≤ p such that p− q′ is very full, since p contains two mutually orthogonal
subprojections equivalent to 1, so q′ can be taken to be a copy of q under one of
them. In particular, if p is very full, then p ∼ p′ ≤ p with p− p′ very full.

If p, q are very full and p ∼ p′ ≤ p with p − p′ very full, we claim that
[q] = [p− p′] + [q]. Let q ∼ q′ ≤ q with q − q′ very full. We may assume p ≤ q′

by replacing it by an equivalent projection; then

[q] = [q′] = [q′ − p] + [p] = [q′ − p] + [p′] = [q′ − p+ p′].

So [q] + [p− p′] = [q′ − p+ p′] + [p− p′] = [q′] = [q].
Thus [p−p′] is an identity for Vf (A) for any very full p, and by the uniqueness

of an identity in a semigroup p− p′ ∼ q − q′ for any other very full q.
To get inverses, let p be very full, and let p′, p′′ be orthogonal subprojections

of p, equivalent to p, with p − p′ − p′′ very full. Then [p] + [p − p′ − p′′] =
[p− p′ − p′′] + [p′′] = [p− p′], so [p− p′ − p′′] is the inverse of p.

(c) If q is any projection in A and p a very full projection with [p] the identity
of Vf (A), then p and q have orthogonal representatives p′, q′ ∈ A; p′ + q′ is very
full and has the same class as q in K0(A). Thus the map from Vf (A) to K0(A)
is surjective, since the image is a subgroup containing K0(A)+. If p is very full
and the class of p is 0 in K0(A), then there is a p′ ∈ A with p′ ∼ p, and a q ∈ A,
q ⊥ p′, such that q ∼ p′+q. But then q is very full, and by cancellation in Vf (A)
we get that [p] is the identity of Vf (A), i.e. the map is injective. �

Corollary 6.11.8. If A is a properly infinite (unital) C∗-algebra, then

K0(A)+ = Σ(A) = K0(A).
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Corollary 6.11.9. Two infinite projections in a simple unital C∗-algebra are
equivalent if and only if they have the same K0-class. Two infinite projections
with infinite complements which have the same K0-class are unitarily equivalent .
Two nontrivial projections with the same K0-class in a purely infinite C∗-algebra
are unitarily equivalent .

7. Theory of AF Algebras

A particularly good illustration of the theory developed in this chapter is the
dimension group approach to the theory of AF algebras. This was the first place
that K-theory explicitly appeared in the theory of C∗-algebras. This classifica-
tion has been greatly expanded in recent years to include many non-AF algebras;
the methods used, while considerably more complicated and sophisticated tech-
nically, are basically similar to those described in this section. (See [Elliott 1996]
for a survey.)

7.1. Basic Definitions

Definition 7.1.1. A C∗-algebra A is an AF algebra if A is an inductive limit
of a sequence of finite-dimensional C∗-algebras.

Examples 7.1.2. The CAR algebra; more generally, UHF and matroid C∗-
algebras; K; C0(X), when X is locally compact, totally disconnected, and second
countable.

AF algebras are in some sense the “zero-dimensional” C∗-algebras, although real
rank zero (6.5) is now regarded as the most natural noncommutative analog of
zero-dimensionality.

AF algebras inherit many nice structural properties from their finite-dimen-
sional subalgebras. For example, every AF algebra is stably finite and has real
rank zero (HP); and a unital AF algebra has connected unitary group and stable
rank 1. The relations ∼, ∼u, and ∼h coincide for AF algebras. The class of
AF algebras is closed under stable isomorphism (this is a nontrivial fact due to
Elliott; see [Effros 1981, 9.4]) and under extensions (a theorem of Brown, proved
using K-theory; see [Effros 1981, 9.9]).

AF algebras were first studied by Bratteli [1972], following analysis of spe-
cial cases by Glimm [1960] (UHF algebras) and Dixmier [1967] (matroid C∗-
algebras). They have a simple enough structure to analyze quite thoroughly, yet
form a rich enough class to illustrate many general phenomena in C∗-algebra
theory. For example, much of the general structure theory of stably finite sim-
ple C∗-algebras has been motivated by the study of simple AF algebras (see
[Blackadar 1983a] for a survey).

We will not attempt to give a complete development of AF algebra theory
here; see [Effros 1981] for an excellent and comprehensive study. Another good
reference is [Goodearl 1982]. We will develop only the most basic aspects, which
illustrate the theory of Sections 5 and 6.
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7.2. Representation by Diagrams

A finite-dimensional C∗-algebra is a direct sum of matrix algebras. If A and
B are finite-dimensional C∗-algebras with A = A1⊕· · ·⊕Ar, B = B1⊕· · ·⊕Bs,
and φ : A → B, then φ can be described by a matrix of nonnegative integers
Rφ = (mij) (1 ≤ i ≤ s, 1 ≤ j ≤ r): write φ = (φ1, . . . , φs), where φi : A→ Bi is
the i-th coordinate function. Regard φi as a representation of A1 ⊕ . . .⊕Ar—it
will break up as a direct sum of irreducible representations. There is exactly one
irreducible representation of A for each summand Aj ; let mij be the multiplicity
of this representation in φi, called the multiplicity of the partial embedding of
Aj into Bi.

Recall the following fact from linear algebra (see [Takesaki 1979, I.11.9], for
example):

Proposition 7.2.1. φ is characterized up to unitary equivalence by Rφ, i .e. if
φ, ψ : A→ B with Rφ = Rψ, then there is a unitary u ∈ B with ψ(x) = uφ(x)u∗

for all x ∈ A.

Conversely, given any s × r matrix R with nonnegative integer entries, there
is a ∗-homomorphism φ : A → B with Rφ = R as long as the summands of
B are of large enough dimension to absorb the embeddings. φi(x1, . . . , xs) =
diag(x1, . . . , x2, . . . , . . . , xs, 0, . . . , 0), with xj repeated mij times. The map φ is
injective if and only if no column of Rφ is zero.

Thus an AF algebra A = lim−→An is completely determined up to isomorphism
by the sizes of the central summands of the An and the multiplicities of the partial
embeddings of An into An+1. This information can be conveniently displayed in
a graph called a Bratteli diagram, with one row for each n, one node in the n-th
row for each summand of An, one edge between each pair of nodes in successive
rows for each partial embedding of nonzero multiplicity, and a positive integer
for each node giving the size of the corresponding summand, and for each edge
giving the multiplicity of the corresponding partial embedding. Conversely, any
such Bratteli diagram defines a (unique) AF algebra.

Much structural information about A (for example, the ideal structure) can
be read off from the Bratteli diagram. In fact, since the diagram determines the
algebra, in principle all of the structure of A is contained within the diagram in
some sense.

However, one major problem restricts the usefulness of the study of AF al-
gebras by diagrams: many quite different diagrams yield isomorphic algebras,
and there is no known reasonable algorithm for generating a diagram from an
algebra or determining when two diagrams give isomorphic algebras.

7.3. Dimension Groups

K-theory gives an alternate approach. In the situation described above, we
have K0(A) ∼= Zr and K0(B) ∼= Zs with the ordinary orderings. φ∗ : Zr → Zs

is given by multiplication by Rφ. The results of 7.2 translate into:
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Proposition 7.3.1. Let A and B be finite-dimensional C∗-algebras.

(a) If σ : K0(A) → K0(B) is a homomorphism of scaled ordered groups, then
there is a ∗-homomorphism φ : A→ B with φ∗ = σ.

(b) If φ, ψ : A → B with φ∗ = ψ∗, then φ and ψ are unitarily equivalent . φ is
injective if and only if φ∗ sends no generator of K0(A) to 0, if and only if
(kerφ∗) ∩K0(A)+ = 0.

If A = lim−→An, then K0(A) = lim−→K0(An) as a scaled ordered group. This is
called the dimension group of A. So K0(A) = lim−→(Zrn , Rn) as scaled ordered
groups.

We now prove the fundamental theorem of AF algebra theory, due to Elliott
[1976], which says that the dimension group of A is a complete isomorphism
invariant for A (among AF algebras).

Theorem 7.3.2. If A and B are AF algebras and σ : K0(A) → K0(B) is an
isomorphism of scaled ordered groups, then there is an isomorphism φ : A→ B

with φ∗ = σ.

Proof. Let A = lim−→(An, αnm) and B = lim−→(Bn, βnm). We seek ∗-homo-
morphisms φi and ψi making the triangles in the following diagram commutative:

A1
- · · · - · · · - Ak - · · · - · · · - A

HH
HHH

H

φ1

j �
�
�
�ψ1
> Z

Z
Z
Z

φ2

~ �
�
�
�ψ2
>

· · ·

B1
- · · · - Bn - · · · - · · · - · · · - B

φ
?

6
ψ

Then the maps φ : A → B and ψ : B → A defined by the φi and ψi will be
∗-isomorphisms which are inverses of each other. We also require that φ∗ = σ

(so ψ∗ = σ−1), i.e. the induced diagram on K-theory should be:

K0(A1) - · · · - · · · - K0(Ak) - · · · - · · · - K0(A)
HH

HHHH

φ1∗

j �
�
�
�ψ1∗
> Z

Z
Z
Z

φ2∗

~ �
�
�
�ψ2∗
>

· · ·

K0(B1) - · · · - K0(Bn) - · · · - · · · - · · · - K0(B)

σ
?

6σ−1

We will first construct the maps φi∗ and ψi∗ inductively, and then lift to the
algebra level by 7.3.1. The key property of the ordered groups K0(An) ∼= Zrn
is the fact that the algebraic and order structures are determined by a finite
number of conditions.

We begin by constructing φ1∗. Regard σ◦α1∗ as a map from K0(A1) to K0(B).
This is a homomorphism of scaled ordered groups. Since K0(B) = lim−→K0(Bn)
as a scaled ordered group, for sufficiently large n there is a homomorphism
φ1∗ : K0(A1) → K0(Bn) of scaled ordered groups with βn∗ ◦ φ1∗ = σ ◦ α1∗ [let
x1, . . . , xr1 be the images of the standard generators e1, . . . , er1 of K0(A1), and
find positive preimages yi for the xi in some K0(Bn). If c1e1 + · · · + cr1er1 is
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the distinguished order unit of K0(A1), then c1x1 + · · · + cr1xr1 is in Σ(B), so
by increasing n if necessary we may assume that c1y1 + · · ·+ cr1yr1 is in Σ(Bn).
φ1∗ sends ei to yi.] Then by 7.3.1(a) there is a map φ1 : A1 → Bn implementing
φ1∗. Now regard σ−1 ◦ βn∗ as a map from K0(Bn) to K0(A), and construct ψ1∗
in the same manner. By construction we have αk∗ ◦ ψ1∗ ◦ φ1∗ = α1∗ as maps
from K0(A1) to K0(A), so (since K0(A1) is finitely presented) by increasing k if
necessary we may make ψ1∗ ◦ φ1∗ = α1k∗.

Now let ω : Bn → Ak be a lift of ψ1∗. Since ω ◦φ1 and α1k agree on K-theory,
by 7.3.1(b) there is a unitary u ∈ Ak with α1k(x) = u(ω◦φ1)(x)u∗ for all x ∈ A1.
Set ψ1(y) = uω(y)u∗ for y ∈ Bn. Continue inductively. �

Note that the proof of 7.3.2 actually shows the stronger result that φ may be
chosen to map alglim−−−→An isomorphically onto alglim−−−→Bn, i.e. any two dense locally
finite ∗-subalgebras of an AF algebra A are isomorphic.

Corollary 7.3.3. Two AF algebras are stably isomorphic if and only if their
dimension groups are isomorphic as ordered groups.

Proof. The scale of a stable C∗-algebra is the whole positive cone. �

There is also a version of 7.3.2 for homomorphisms, with virtually the same
proof:

Theorem 7.3.4. If A and B are AF algebras and σ : K0(A) → K0(B) is a
homomorphism of scaled ordered groups, then there is a ∗-homomorphism φ :
A → B with φ∗ = σ. If A and B are unital and σ([1A]) = [1B ], then φ may be
chosen unital .

One can read much of the structure of an AF algebra A from its dimension group.
For example, the (closed two-sided) ideals of A are in one-one correspondence
with the order ideals of K0(A). In particular, A is simple if and only if K0(A)
is simple. Also, the (semifinite densely defined) traces on A are in one-one
correspondence with the positive homomorphisms from K0(A) to R. The norm
of a trace τ is just sup{τ(x) : x ∈ Σ(A)}; so a trace is finite if and only if it is
bounded on Σ(A). If A is unital, the tracial states of A correspond exactly to
the states on (K0(A),K0(A)+, [1A]) (6.9.2).

7.4. Classification of Dimension Groups

To complete the general theory, we need a characterization of which ordered
groups can occur as dimension groups of AF algebras. The dimension groups
are, of course, exactly the ordered groups which can be written as lim−→Zrn (with
ordinary ordering), but this condition is frequently nearly impossible to check.
An intrinsic characterization is needed.

There are three fundamental properties of dimension groups. First, any
such group is clearly countable. Secondly, it is easy to see that a dimen-
sion group is unperforated (and in particular torsion-free), since Zn is unper-
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forated. And finally, a dimension group G has the Riesz Interpolation Prop-
erty : if x1, x2, y1, y2 ∈ G with x1, x2 ≤ y1, y2, then there is a z ∈ G with
x1, x2 ≤ z ≤ y1, y2. [If x1, x2 ≤ y1, y2 in K0(A), then the same relation must
hold among suitable preimages in K0(An) ∼= Zrn for some n. But Zr is a lattice,
so interpolation obviously holds there.]

The theorem of Effros, Handelman, and Shen states that these three properties
characterize dimension groups:

Theorem 7.4.1. An ordered group is a dimension group if and only if it is
countable, unperforated , and has the Riesz Interpolation Property .

See [Effros 1981, 3.1] for a proof.

Corollary 7.4.2. Any countable totally ordered group is a dimension group.

7.4.2 was obtained by Elliott [1979] before 7.4.1 was proved.
The description of dimension groups can be made more explicit in the case

of simple AF algebras. We have the following result of Effros, Handelman, and
Shen [Effros et al. 1980, 3.1], which is a fairly easy consequence of 7.4.1:

Theorem 7.4.3. Let G be a countable torsion-free abelian group, ∆ a metrizable
Choquet simplex , and ρ : G → Aff(∆) a homomorphism with uniformly dense
range. Then G becomes a simple dimension group with the strict ordering from
ρ, i .e. with G+ = {0}∪{x ∈ G : ρ(x) > 0 everywhere}. If G contains an element
u with ρ(u) the constant function 1, then (G,G+, u) is isomorphic to the scaled
dimension group of a (unique) simple unital AF algebra A with T (A) ∼= ∆.

The converse is also true [Blackadar 1980b, 3.1]: if A is an infinite-dimensional
simple unital AF algebra, then the state space of K0(A) is T (A); the canonical
map ρ from K0(A) to Aff(T (A)) has uniformly dense range, and K0(A) has the
strict ordering from ρ (6.9.2, 6.9.3).

Among other things, this gives an easy way of constructing simple unital
AF algebras with arbitrary trace simplexes (cf. [Goodearl 1977/78; Blackadar
1980b]).

7.4.4. If ∆ is an (n-1)-simplex, then Aff(∆) ∼= Rn, so as a special case of
7.4.3 it follows that if G is countable and torsion-free, and ρ : G → Rn is a
homomorphism with dense range, then G is a simple dimension group with the
strict ordering from ρ. In particular, a countable dense subgroup of Rn is a
simple dimension group with the strict ordering.

7.5. UHF Algebras

An important special case is n = 1. Any countable dense subgroup of R
is a simple dimension group. The dense subgroups of Q containing Z corre-
spond to the UHF algebras (taking 1 as the order unit), and the classification
in [Glimm 1960] corresponds exactly to the classification of these subgroups.
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These are in one-one correspondence with the generalized integers, formal prod-
ucts q = 2m23m35m5 . . . , where an infinite number of primes and infinite expo-
nents are allowed. The subgroup of Q corresponding to q is the group, denoted
Z(q), of all rational numbers whose denominators “divide” q. (If q is an ordinary
integer, Z(q) is not dense, and the corresponding algebra is Mq.) The algebra
corresponding to the dyadic rationals D = Z(2∞) is the CAR algebra. More
generally, the classification of matroid C∗-algebras (ones stably isomorphic to
UHF algebras) done in [Dixmier 1967] is a special case of the classification in
6.6. There are many other interesting countable dense subgroups of R, for ex-
ample Z + Zθ, θ irrational; these groups are closely related to the structure of
irrational rotation algebras (10.11.6) [Effros 1981, 10.1; Rieffel 1981; Pimsner
and Voiculescu 1980b].

7.6. Other Simple AF Algebras

Non-totally-ordered simple dimension groups are particularly interesting, since
they illustrate phenomena which cannot happen in factors. For example, con-
sider the following four dimension groups:

G1 = Q2 with strict ordering;
G2 = Q2 with strict ordering from first coordinate;
G3 = D2 with strict ordering from first coordinate;
G4 = D ⊕ Z with strict ordering from first coordinate.

Choose order units ui ∈ Gi by u1 = (1, 1), u2 = u3 = u4 = (1, 0). Let Ai be the
simple unital AF algebra with dimension group (Gi, ui).

7.6.1. These groups can be pictured geometrically as subsets of R2. In G1, the
positive cone consists of the origin and the points of the group in the open first
quadrant; in G2 −G4 the positive cone is the origin and the points in the open
right half plane. In G1, the hereditary generating subset Σ(A1) consists of (0, 0),
(1, 1), and the points in the open square {(x, y) : 0 < x < 1, 0 < y < 1}. In G2−
G4Σ(Ai) consists of (0, 0), (1, 0), and the open vertical strip {(x, y) : 0 < x < 1}.
G1 has two extremal states τ1 and τ2, corresponding to the projections onto the
coordinate axes; the others have a unique state corresponding to projection onto
the x-axis (and they have the strict ordering from this projection). So A1 has
two extremal tracial states, also called τ1 and τ2, and the others a unique tracial
state τ .

7.6.2. None of the algebras has comparability of projections. For example, in
A1 consider projections p and q with [p] = ( 1

2 ,
1
4 ), [q] = ( 1

4 ,
1
2 ). Then τ1(p) = 1

2 ,
τ1(q) = 1

4 , τ2(p) = 1
4 , τ2(q) = 1

2 , so they cannot be comparable. Even though
A2 − A4 have unique trace, they also fail to have comparability of projections:
take p and q with [p] = ( 1

2 , 0), [q] = ( 1
2 , 1). (Note that these two elements are

incomparable.) Although p and q are incomparable, they are “almost compara-
ble” in the sense that whenever r � p, r 6= p, then r � q and vice versa, and
similarly if p � s, p 6= s.
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7.6.3. The C∗-algebras stably isomorphic to Ai can easily be described as in
6.6; they are parametrized by the upward directed hereditary generating subsets
Σ of Gi+.

In G2 −G4, there are three possibilities for Σ:

Σ(a,b) = {(0, 0), (a, b)} ∪ {(x, y) : 0 < x < a} for some (a, b) ∈ Gi+;
Σ0
a = {(0, 0)} ∪ {(x, y) : 0 < x < a} for some a ∈ R+;

Σ0
∞ = Gi+.

The sets Σ(a,b) correspond to the unital algebras, Σ0
a to the nonunital algebras

with finite trace, and Σ0
∞ to the stable algebra. This parametrization is not

one-to-one, since by 7.3.2 any two Σ conjugate under an order-automorphism of
Gi will yield isomorphic algebras. In G2, we have Σ0

a ∼ Σ0
b if and only if b = qa

for some q ∈ Q, under the automorphism (x, y) → (qx, y), so the isomorphism
classes of nonunital finite C∗-algebras stably isomorphic to A2 are parametrized
by the group R/Q. This classification is virtually identical to the classification
of matroid C∗-algebras with dimension group Q. In G3 or G4, Σ0

a ∼ Σ0
b if and

only if b = 2na for some n ∈ Z, so the finite nonunital algebras are parametrized
by R+/{2n : n ∈ Z} ∼= R/Z.

There is also much collapsing among the Σ(a,b). In G2, all the Σ(a,b) are conju-
gate, i.e. any unital C∗-algebra stably isomorphic to A2 is actually isomorphic to
A2. (The UHF algebra with dimension group Q has the same property.) In G3,
the order-preserving automorphisms are all of the form (x, y)→ (2nx, rx+2my),
where m,n ∈ Z and r ∈ D, so Σ(a,b) ∼ Σ(c,d) if and only if there are such num-
bers with c = 2na, d = ra+2mb. So there are many unital algebras in this stable
isomorphism class, and they are not all formed as matrix algebras over a fixed
“fundamental” algebra as is the case with the CAR algebra. The automorphisms
of G4 are a bit harder to characterize.

7.6.4. The situation with G1 is similar, but there is one interesting new phe-
nomenon. We have these possibilities for Σ:

Σ(a,b) = {(0, 0), (a, b)} ∪ {(x, y) : 0 < x < a, 0 < y < b} for some (a, b) ∈ G1+;
Σ0
a,b = {(0, 0)} ∪ {(x, y) : 0 < x < a, 0 < y < b} for some (a, b) ∈ R2

+;
Σ0
a,∞ = {(0, 0)} ∪ {(x, y) : 0 < x < a, y > 0} for some a ∈ R+;

Σ0
∞,b = (0, 0) ∪ {(x, y) : 0 < y < b, x > 0} for some b ∈ R+;

Σ0
∞,∞ = G1+.

As before, the Σ(a,b) correspond to unital algebras, Σ0
∞,∞ to the stable algebra,

and Σ0
a,b to the nonunital algebras with both extremal traces finite. But in this

case we also have sets of the form Σ0
a,∞ and Σ0

∞,b, which correspond to algebras
with one finite extremal trace and one infinite one. These algebras are simple
and have a finite trace, but are not algebraically simple. A further discussion of
examples of this kind is found in [Blackadar 1980b, 4.4-4.6].
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7.6.5. By choosing other countable dense subgroups of R2, one can construct
other interesting examples similar to A1 which have various pathological auto-
morphism properties.

A dimension group somewhat similar to G4 was the essential tool used in the
construction of the first simple unital projectionless C∗-algebra [Blackadar 1981].

7.7. EXERCISES AND PROBLEMS

7.7.1. Construct a Bratteli diagram for A3 as follows.

(a) Let vn = (2−2n+1, 2−n), wn = (2−2n+1,−2−n) in R2; let Γn be the subgroup
of R2 generated by vn and wn, with (Γn)+ the semigroup generated by vn, wn,
0. vn = 3vn+1 + wn+1, wn = vn+1 + 3wn+1, so Γn ⊆ Γn+1, (Γn)+ ⊆ (Γn+1)+;⋃

Γn = D2 = G3,
⋃

(Γn)+ = G3+.

(b) (Γn, (Γn)+, (1, 0)) is isomorphic to Z2 with ordinary ordering and order unit
(22n−2, 22n−2); the embedding Γn → Γn+1 corresponds to the homomorphism
from Z2 to Z2 with matrix R =

[
3
1

1
3

]
. So one obtains a stationary inductive

system [Effros 1981, § 6] for G3, i.e. one of the form lim−→(Zrn , Rn) with constant
rn and Rn.

(c) Write down the corresponding Bratteli diagram. The n-th algebra is a direct
sum of two 4n−1 × 4n−1 matrix algebras.

(d) Modify the construction to give a Bratteli diagram for A2. Does G2 have a
stationary inductive system?

7.7.2. (a) Show that a procedure such as in 7.7.1 does not work to give a diagram
for A4. G4 is not ultrasimplicially ordered : it cannot be written as an inductive
limit (Zrn , Rn) (in this case necessarily rn = 2) with Rn injective.

(b) A diagram for A4 can be constructed as follows. Let un = (2−2n, 1), vn =
(2−2n, −1), wn = (2−2n, 0). Then G4 is the group generated by {un,vn,wn},
with G4+ the semigroup generated by {un,vn,wn,0}. Then un = 2un+1 +
vn+1 + wn+1, vn = vn+1 + 3wn+1, wn = un+1 + vn+1 + 2wn+1. Thus G4 is
isomorphic to the stationary inductive limit of Z3 with matrix 2 0 1

1 1 1
1 3 2

 .
(c) Write down the corresponding Bratteli diagram.

7.7.3. Find a diagram for A1 as follows.

(a) Let v1 = ( 2
3 ,

1
3 ), w1 = ( 1

3 ,
2
3 ), and choose vn and wn inductively by the

following procedure: if vn = (an, bn), wn = (bn, an) with an > bn, set mn =
an/bn, and let mn+1 be a rational number greater than mn. Let x be the point
of intersection of the line through vn with slope mn+1 and the line through the
origin with slope 1/mn+1; let y = (b, a), where (a, b) = vn − x. Then y is
parallel to x. Choose vn+1 to be a point with positive rational coordinates such
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that both x and y are integral multiples of (n!)vn+1. Let wn+1 be vn+1 with
coordinates reversed.

(b) Show that vn = knvn+1 + lnwn+1, wn = lnvn+1 +knwn+1 for some positive
integers kn, ln. If

Rn =
[
kn ln
ln kn

]
,

then lim−→(Z2, Rn) ∼= (G1, G1+).

(c) Write down the corresponding Bratteli diagram. The n-th algebra is a direct
sum of two copies of the pn × pn matrices, where pn =

∏n−1
i=1 (ki + li)(p1 = 1).

(d) G1 cannot have a stationary inductive system, since any stationary dimen-
sion group has a unique state [Effros 1981, 6.1].

7.7.4. A dimension group is 2-symmetric if it is an inductive limit of the form
(Z2, Rn), with

Rn =
[
kn ln
ln kn

]
.

G1, G2, G3 are 2-symmetric. A 2-symmetric group is ultrasimplicially ordered.

(a) The 2-symmetric dimension groups are classified as follows [Fack and Ma-
réchal 1979]. There are four types, the first two being degenerate. We say that
two generalized integers are compatible if they are either both “odd” or if both
have a factor of 2∞.

(1) If all but finitely many ln are zero, then the limit group is Z(q)⊕Z(q) with the
ordinary ordering, for some generalized integer q. The corresponding algebra
is a direct sum of two isomorphic UHF algebras (or matrix algebras).

(2) If Rn is not invertible (i.e. kn = ln) for infinitely many n, then the limit group
is Z(q) for some generalized integer q with a factor of 2∞. The corresponding
algebras are UHF algebras.

(3) The limit group can be the subgroup Gp,q,∞ of Q2 generated by Z(p) ⊕Z(q)

and (1/2, 1/2) for any compatible generalized integers p and q (q can be an odd
ordinary integer if p is “odd”), with strict ordering from the first coordinate.
The corresponding algebras are simple with unique trace.

(4) The limit group can be the subgroup Gp,q,α of Q2 generated by Z(p) ⊕ Z(q)

and (1/2, 1/2) for any compatible generalized (not ordinary) integers p and q
which are not both (ordinary) integer multiples of r∞ for the same prime r,
with the positive cone the open wedge between the rays of slope ±α, for any
α > 1. The corresponding algebras are simple with two extremal traces.

In each case, all such groups occur. In cases (3) and (4), Gp,q,α ∼= Gp′,q′,α′ if
and only if there are positive rational numbers a and b with p′ = ap, q′ = bq,
α′ = (b/a)α.

(b) To generate symmetric diagrams in cases (3) and (4), choose integers pn, qn
of the same parity with 0 < qn < pn,

∏
pn = p,

∏
qn = q, and such that the
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infinite product
∏ pn

qn
diverges to +∞ in case (3) or converges to α in case (4).

(Show that it is possible to find such pn and qn if and only if the conditions of
(3) or (4) are satisfied.) Then set kn = (pn + qn)/2, ln = (pn − qn)/2 = pn − kn.
Show that the right group is obtained in this way.

(c) Let G = Z(3∞) ⊕ Z with strict ordering from the first coordinate, and let H
be the subgroup of G of all pairs (m/3k, n) with m and n of the same parity.
Then H ∼= G3∞,1,∞ is 2-symmetric. Show that G is not even ultrasimplicially
ordered [Elliott 1979, 2.7].

(d) Show that D2 with strict ordering is not 2-symmetric. Show why a procedure
such as in 7.7.3 does not work to give a symmetric diagram (an insoluble system
of Diophantine equations arises). Is this group ultrasimplicially ordered?

(e) Show that the 2-symmetric dimension groups are exactly the dimension
groups of fixed-point subalgebras of UHF algebras under product-type symme-
tries [Fack and Maréchal 1979].

7.7.5. Prove the following theorem [Blackadar 1981, 3.1; Herman and Rosenberg
1981, 3.4]:

Theorem. Let A be an AF algebra. Give the automorphism group Aut(A)
the topology of pointwise (norm-)convergence. Then the following subgroups of
Aut(A) coincide:

In(A), the closure of the inner automorphisms In(A) of the form adu, u ∈ U1(Ã).
Inn(A), the closure of the inner automorphisms Inn(A) of the form adu, u ∈
U1(M(A)).

Aut(A)0, the connected component of the identity .
Aut(A)p, the path component of the identity .
Id(A) = {α ∈ Aut(A) | α∗ = 1 on K0(A)}.

This group of automorphisms is called the group of approximately inner auto-
morphisms. In fact, if α is approximately inner, then there is a norm-continuous
path 〈ut〉 of unitaries in Ã such that adut → α as t→∞.

(a) Show that Id(A) = {α ∈ Aut(A) | α(p) ∼ p for all projections p ∈ A}, using
cancellation and the fact that the scale Σ generates K0(A) if A is AF.

(b) In(A), Inn(A), and Aut(A)0 are obviously closed subgroups. Id(A) is also
closed by 4.6.6.

(c) Clearly In(A) ⊆ Inn(A), Aut(A)p ⊆ Aut(A)0, and Inn(A) ⊆ Id(A), so
Inn(A) ⊆ Id(A). (Of course, if A is unital, then In(A) = Inn(A).)

(d) If α /∈ Id(A), let p be a projection in A with α(p) 6∼ p. Then H = {β ∈
Aut(A) | β(p) ∼ p} is a subgroup of Aut(A) containing Id(A) but not α. H is
open by 4.6.6. So Aut(A)0 ⊆ Id(A).

(e) Show that Id(A) ⊆ In(A) ∩ Aut(A)p as follows, completing the proof of the
theorem.
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(1) If A =
⋃
An with An finite-dimensional, then the commutant of An in A is⋃

Rk, where Rk(k ≥ n) is the commutant of An in Ak. Thus the commutant
of An in A is an AF algebra [Blackadar 1980a, 2.1].

(2) If A =
⋃
An with An finite-dimensional, and α ∈ Id(A), write An + C1 ⊆

Ã as A(1)
n ⊕ . . . ⊕ A

(r)
n with A

(k)
n a matrix algebra. Let (e(k)

ij ) be a set of

matrix units for A(k)
n , and let f (k)

ij = α(e(k)
ij ). Since α ∈ Id(A), there is

a partial isometry wk ∈ Ã with w∗kwk = e
(k)
11 , wkw∗k = f

(k)
11 . Let un =∑

k

∑
i f

(k)
i1 wke

(k)
1i . Then un is a unitary in Ã with α|An = (adun)|An [Bratteli

1972, 3.8].
(3) u∗nun+1 is in the commutant of An in Ã. Let vt(n ≤ t ≤ n + 1) be a path

of unitaries in the commutant of An from 1 to u∗nun+1, and set ut = unvt for
n ≤ t ≤ n+ 1. adut = α on An for t ≥ n, so adut → α as t→∞.
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CHAPTER IV

K1-THEORY AND BOTT PERIODICITY

In this chapter, we will define the higher K-groups of a Banach algebra and relate
them to suspensions in Section 8, and then prove the Bott Periodicity Theorem
and establish the fundamental K-theory exact sequence in Section 9.

8. Higher K-Groups

8.1. Definition of K1(A)

Let A be a local Banach algebra. Recall that GLn(A) = {x ∈ GLn(A+) : x ≡
1n mod Mn(A)}. GLn(A) is a closed normal subgroup of GLn(A+). We embed
GLn(A) into GLn+1(A) by x→ diag(x, 1). [This embedding is the “exponential”
of the embedding of Mn(A) into Mn+1(A) considered in Chapter III. This is
the appropriate analog, since the connection between K0 and K1 is given by
exponentiation.]

Let GL∞(A) = lim−→GLn(A). GL∞(A) is a topological group with the induc-
tive limit topology. GL∞(A) can be thought of as the group of invertible infinite
matrices which have diagonal elements in 1A+ + A, off-diagonal elements in A,
and only finitely many entries different from 0 or 1. We will identify elements of
GLn(A) with their images in GL∞(A).

The embedding of GLn(A) into GLn+1(A) maps GLn(A)0 into GLn+1(A)0,
and GL∞(A)0 = lim−→GLn(A)0.

Definition 8.1.1. K1(A) = GL∞(A)/GL∞(A)0 = lim−→[GLn(A)/GLn(A)0].

This is related to, but not the same as, the group Kalg
1 of algebraic K-theory:

Kalg
1 (A) is the quotient of GL∞(A) by its commutator subgroup. See [Karoubi

1978, II.6.13] for the relationship.
K1(A) is countable if A is separable, since nearby invertible elements are in the

same component. By the same reasoning (using 3.1.4) we have K1(A) ∼= K1(Ā).
If A is a local C∗-algebra, then Un(A)/Un(A)0

∼= GLn(A)/GLn(A)0, and so
K1(A) is isomorphic to U∞(A)/U∞(A)0, since there is a deformation retraction
of GLn(A) onto Un(A) given by polar decomposition. If A is a C∗-algebra,
K1(A) is also isomorphic to U1(A⊗K)/U1(A⊗K)0.

Examples 8.1.2. (a) K1(C) = 0, and more generally K1 of any von Neumann
algebra (or AW∗-algebra) is 0 (the unitary group of a von Neumann algebra is

59
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connected by spectral theory). K1 of any AF algebra is also 0 for the same
reason.

(b) If A = C(S1), then U1(A)/U1(A)0
∼= Z by sending a function to its winding

number around 0. We will show that the map from U1(A)/U1(A)0 to K1(A) is
an isomorphism in this case, so K1(C(S1)) ∼= Z.

(c) The map from GLn(A)/GLn(A)0 to GLn+1(A)/GLn+1(A)0 need not be an
isomorphism, and hence the map from GLn(A)/GLn(A)0 to K1(A) need not be
an isomorphism. For example, let A = C(S3). Then U1(A)/U1(A)0 is trivial
since every map from S3 to S1 is homotopic to a constant [Spanier 1966, 7.2.12];
but the homeomorphism S3 ∼= SU(2) gives a unitary in C(S3,M2) ∼= M2(A)
which is not in the connected component of the identity. See problem 6.10.1.

(d) The group GL1(A)/GL1(A)0 need not be abelian in general. For example,
let A = C(U(2)×U(2),M2) (where U(2) = U2(C)). Define unitaries u and v by
u(x, y) = x, v(x, y) = y. Then uv and vu are in different connected components
of U1(A) [Araki et al. 1960]. However, diag(uv, 1) and diag(vu, 1) are in the same
component of U2(A) (3.4.1), so the map from U1(A)/U1(A)0 to U2(A)/U2(A)0

is not injective in this case.

If u ∈ GLn(A), we write [u] for its image in K1(A).

Proposition 8.1.3. K1(A) is an abelian group; in fact , [u][v] = [diag(u, v)].

Proof. Follows immediately from 3.4.1. �

If C is a commutative local Banach algebra, then the map from GL1(C)/GL1(C)0

to K1(C) is always injective, since the determinant gives a continuous cross sec-
tion for the embedding GL1(C) → GL∞(C). Even in the commutative C∗-
algebra case, the map U1(C)/U1(C)0 → K1(C) need not be surjective (8.1.2(c)),
and the map Un(C)/Un(C)0 → K1(C) need not be injective (or surjective) for
n > 1 (8.1.2(d)).

There is evidence that the map U1(A)/U1(A)0 → K1(A) is always an iso-
morphism when A is a simple unital C∗-algebra, although this remains an open
problem.

As a simple example of this, we have:

Proposition 8.1.4. Let A be a purely infinite C∗-algebra (6.11.4). Then the
standard map from U1(A)/U1(A)0 to K1(A) is an isomorphism.

Proof. If u is a unitary in A⊗K, then u is close to a unitary in Mn(A) + C1
for some n. If p is a nontrivial projection in A equivalent to 1, then 1Mn(A)

is unitarily equivalent to a subprojection of p within M2n(A) (4.3.1), hence ho-
motopic within M4n(A) (4.4.1), i.e. there is a path of unital endomorphisms of
M4n(A) from the identity to an endomorphism sending 1Mn(A) to a subprojec-
tion of p. Thus u is connected to a unitary of the form v + (1 − p), where v is
a unitary in pAp, i.e. the map from U1(A)/U1(A)0 to K1(A) is surjective. Also,
since 1A − p contains a sequence of mutually orthogonal projections equivalent
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to p (6.11.2), there is an isomorphism from pAp⊗K into A which sends x⊗ e11

to x for x ∈ pAp. So if v is in U1(pAp ⊗ K)0, it is in U1(A)0, i.e. the map is
injective. �

The theory of stable rank [Rieffel 1983b] asserts that the map

GLn(A)/GLn(A)0 → K1(A)

is an isomorphism for sufficiently large n if sr(A) is finite, and gives some infor-
mation on the smallest n for which this is true. The question of when this map
is injective or surjective is a typical question of nonstable K-theory (6.5).

8.1.5. If φ : A → B, then φ extends uniquely to a unital map from A+ to
B+, and hence defines a homomorphism φ∗ : K1(A) → K1(B). Also, if A =
lim−→(Ai, φij), then K1(A) ∼= lim−→(K1(Ai), φij∗) (see 3.3.3). So K1 is a functor
from local Banach algebras to abelian groups which commutes with inductive
limits.

8.2. Suspensions

Definition 8.2.1. The suspension of A, denoted SA, is

{f : R → A | f continuous, lim
x→∞

‖f(x)‖ = 0}.

With pointwise operations and sup norm, SA is a local Banach algebra which is
complete if A is; if A is a C∗-algebra, then so is SA ∼= C0(R)⊗A.

We have S(Mn(A)) ∼= Mn(SA), and the map φ : A→ B induces Sφ : SA→ SB.
Moreover,

(SA)+∼={f : [0, 1]→A+ |f continuous, f(0)=f(1)=λ1, f(t)=λ1+xt for xt∈A}
∼={f :S1→A |f continuous, f(z)=λ1+xz, xz∈A, x1 =0}.

Theorem 8.2.2. K1(A) is naturally isomorphic to K0(SA), i .e. there is an
isomorphism θA : K1(A) → K0(SA) such that , whenever φ : A → B, the
following diagram commutes:

K1(A)
φ∗ - K1(B)

K0(SA)

θA
? Sφ∗- K0(SB)

?
θB

(In the language of category theory , θ gives an invertible natural transformation
from K1 to K0 ◦ S.)

Proof. Let u ∈ GLn(A). Take a path zt from 12n to diag(u, u−1) in GL2n(A)
(note that the path given in the proof of 3.4.1 lies in GL2n(A)). Set et = ztpnz

−1
t .

Then e = (et) is an idempotent in M2n((SA)+). Set θA([u]) = [e]−[pn] (where pn
also denotes the corresponding element of M∞((SA)+), i.e. the constant function
pn).
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(1) Show θA is well defined. If [u] = [v], we may assume that n is large enough
that there are paths at from 1 to v−1u and bt from 1 to vu−1 in GLn(A). Let zt
and wt be paths for diag(u, u−1) and diag(v, v−1), et and ft the corresponding
projections. Let xt = wt diag(at, bt)z−1

t . Then x is an invertible element of
M2n((SA)+) which conjugates e to f , so [e]− [pn] = [f ]− [pn] in K0(SA).

(2) Conversely, if θA([u]) = θA([v]), let z, w, e, f be as above. For sufficiently
large k > n, there is an invertible x ∈ (Mk(SA))+ which conjugates e to f .
Then w−1

t xtzt commutes with pn in Mk(A+) (identifying z, w, e, f, pn with their
images in Mk(A+) ), so w−1

t xtzt must be of the form diag(ct, dt) for each t,
where ct ∈ GLn(A) and dt ∈ GLk−n(A). We have c0 = 1, c1 = v−1u.

(3) To show θA is onto, let [f ] − [pn] ∈ K0(SA), i.e. f is an idempotent in
Mk((SA)+) with f ≡ pn mod Mk(SA). So f is a path ft ∈ Mk(A+) with
f0 = f1 = pn and ft ≡ pn mod Mk(A) for all t. We may assume k ≥ 2n.
Let wt ∈ GLk(A) with wtpnw

−1
t = ft, w0 = 1k, wt ≡ 1k for all t, as in 3.4.1.

(Check that the formula given there yields wt ∈ GL2(A) if the path is constant
mod A.) Then w1pnw

−1
1 = pn, so w1 must be of the form diag(u, v) for some

u ∈ GLn(A), v ∈ GLk−n(A). By expanding k if necessary we may assume v is
connected by a path bt to diag(u−1, 1k−2n) (add on diag(v−1, u−1) to everything
if necessary). Then at = v−1bt connects 1k−n to v−1 diag(u−1, 1k−2n). Let zt
be a path from 1k to diag(u, u−1, 1k−2n) in GLk(A), and et = ztpnz

−1
t . Then

xt = wt diag(1, at)z−1
t has x0 = x1 = 1, so x ∈ Mk((SA)+); x is invertible

and conjugates e to f . So [f ] − [pn] = [e] − [pn] = θA([u]). The fact that θA
is a homomorphism and the functoriality of θ are clear, since all of the group
operations are diagonal sums, which commute with θ and S. �

Corollary 8.2.3. If 0 → J
ι−→ A

π−→ A/J → 0 is an exact sequence of local
Banach algebras, then the induced sequence K1(J) ι∗−→ K1(A) π∗−→ K1(A/J) is
exact in the middle.

8.3. Long Exact Sequence of K-Theory

Just as with K0, we cannot make the sequence exact at the ends by adding 0’s.
For example, if A = C([0, 1]), J = C0((0, 1)), then the unitary u(t) = e2πit in J+

gives a nontrivial element of K1(J) which becomes trivial in K1(A), so the map
from K1(J) to K1(A) is not injective. Similarly, if A = C(D̄2), J = C0(D2),
where D2 is the open unit disk, then A/J ∼= C(S1). K1(A) is trivial, but
K1(A/J) ∼= Z, so the map from K1(A) to K1(A/J) is not surjective.

Instead, we can define a connecting map ∂ : K1(A/J)→ K0(A) which makes
a long exact sequence

K1(J)
ι∗−→ K1(A)

π∗−→ K1(A/J) ∂−→ K0(J)
ι∗−→ K0(A)

π∗−→ K0(A/J).

Definition 8.3.1. Let u ∈ GLn(A/J), and let w ∈ GL2n(A) be a lift of
diag(u, u−1). Define ∂([u]) = [wpnw−1]−[pn] ∈ K0(J). (We have ∂([u]) ∈ K0(J)
because diag(u, u−1) commutes with pn, so wpnw−1 ∈ M2n(J+), and its image
mod M2n(J) is pn.)
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To show that ∂ is well defined, suppose we lift diag(u, u−1) to w′, and set z =
w′w−1. Then z ∈ GL2n(J), and [zwpnw−1z−1]− [pn] = [wpnw−1]− [pn], so the
definition is independent of the lift. If we replace u by u′ with [u′] = [u], then
v = u−1u′ ∈ GLn(A/J)0, so we can lift v to a and uv−1u−1 to b in GLn(A) by
3.4.4. Then diag(u′, u′−1) = diag(uv, v−1u−1) = diag(u, u−1) diag(v, uv−1u−1)
which lifts to w diag(a, b). diag(a, b) commutes with pn.
∂ is obviously a homomorphism since both operations are diagonal sum.

8.3.2. The map ∂ is called the index map. The reason is the following. Suppose
A is a unital C∗-algebra and u is a unitary in Mn(A/J). If u lifts to a partial
isometry v ∈Mn(A), then diag(u, u−1) lifts to the unitary

w =
[

v 1− vv∗
1− v∗v v∗

]
so ∂([u]) = [wpnw−1]− [pn] = [diag(vv∗, 1− v∗v)]− [pn] = [1− v∗v]− [1− vv∗].
In the special case A = B(H), J = K(H), and K0(K) is identified with Z in the
standard way, the map ∂ is exactly the map which sends a unitary in the Calkin
algebra to its Fredholm index.

Unitaries in a quotient do not lift to partial isometries in general, so the
definition of ∂ must be stated in the more complicated way given above.

Proposition 8.3.3. ∂ makes the sequence exact at K1(A/J).

Proof. If v ∈ GLn(A), then diag(π(v), π(v)−1) has a lifting diag(v, v−1) which
commutes with pn, so ∂([π(v)]) = 0. Conversely, if u ∈ GLn(A/J) and ∂([u]) =
0, let w be a lift of diag(u, u−1). Then [wpnw−1] − [pn] = [xpnx−1] − [pn]
for some x ∈ GL2n(J+), with x ≡ a mod J , where a ∈ GL2n(C) commutes
with pn (regarding a as a member of GL2n(J+)). By increasing n we may
assume wpnw−1 = xpnx

−1. Write y = xa−1 ∈ GL2n(J); then y−1w is a lift of
diag(u, u−1), and commutes with pn, so y−1w = diag(c, d) for some c, d. c is a
lift of u. �

Proposition 8.3.4. ∂ makes the sequence exact at K0(J).

Proof. It is trivial that ∂([u]) → 0 in K0(A). Conversely, if [e] − [pn] → 0
in K0(A), then by increasing n we may suppose e = wpnw

−1 for some w ∈
GL4n(A)0. In GL4n(A/J), π(w) = diag(u1, u2), since e ≡ pn mod J , and π(w) ∈
GL4n(A/J)0. By increasing n we may assume that u2 and diag(u−1

1 , 1) are in the
same component, and so diag(u−1

1 , 1)u−1
2 has a lift v. Then, if z = diag(1, v)w,

we have π(z) = diag(u1, u
−1
1 , 1) and e = zpnz

−1, so [e]− [pn] = ∂([u1]). �

8.3.5. We can also define higher K-groups by

K2(A) = K1(SA) = K0(S2A), . . . ,Kn(A) = K0(SnA).

We then have connecting maps from Kn+1(A/J) to Kn(J) for each n by sus-
pension, and an infinite long exact sequence

· · · ∂−→ Kn(J)
ι∗−→ Kn(A)

π∗−→ Kn(A/J) ∂−→ Kn−1(J)
ι∗−→ · · · π∗−→ K0(A/J).
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Proposition 8.3.6. If 0 → J → A → A/J → 0 is a split exact sequence of
local Banach algebras, then 0 → Kn(J) → Kn(A) → Kn(A/J) → 0 is a split
exact sequence for all n.

Proof. All the connecting maps are 0 since everything in Kn(A/J) lifts. �

Corollary 8.3.7. K1(A) ∼= K1(A+) for all A. More precisely , the inclusion
of A into A+ induces an isomorphism.

Proof. Use 8.3.6 plus the fact that K1(C) = 0. �

9. Bott Periodicity

In this section, we will show that K0(A) is naturally isomorphic to K1(SA),
and hence to K2(A). As a consequence, the long exact sequence of 8.3.5 becomes
a cyclic 6-term exact sequence. Throughout, A will be a local Banach algebra.

9.1. Basic Definitions

We have a split exact sequence 0→ SA → ΩA → A →0, where ΩA =
C(S1, A), which induces a split exact sequence 0→ K1(SA) → K1(ΩA) →
K1(A) →0, so K1(SA) = ker η∗, where η : ΩA → A is evaluation at 1. This
will be our standard picture of K1(SA). So K1(SA) may be viewed as the
group of homotopy equivalence classes of loops in GL∞(A) with base point 1.
The group operation is pointwise multiplication, but may alternately be taken
as the ordinary concatenation multiplication of loops [Spanier 1966, 1.6.10], i.e.
K1(SA) ∼= π1(GL∞(A)).

If e is an idempotent in Mn(A+), write fe(z) = ze+ (1− e) ∈ GLn(Ω(A+)) ∼=
C(S1,GLn(A+)). A loop of this sort is called an idempotent loop. If e1 ≡ e2

mod Mn(A), then fe1f
−1
e2 ∈ GLn(ΩA), taking the value 1 at z = 1. If e1 ∼h e2,

then fe1 is homotopic to fe2 as elements of GLn(Ω(A+)) taking the value 1 at 1,
i.e. as loops in GLn(A+) with base point 1. We will write fe1 ∼h fe2 to denote
this type of homotopy of elements.

Definition 9.1.1. The homomorphism βA : K0(A) → K1(SA) defined by
βA([e]− [pn]) = [fef−1

pn ] is called the Bott map for A.

βA is well defined by the discussion in 9.1. The Bott map construction is clearly
functorial (natural), i.e. if φ : A→ B, then the following diagram is commutative:

K0(A)
φ∗ - K0(B)

K1(SA)

βA
? φ∗ - K1(SB)

?
βB
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9.2. Proof of the Theorem

Theorem 9.2.1 (Bott Periodicity). βA is an isomorphism.

This theorem is probably the central result of K-theory. The proof will proceed
in a number of steps.

Lemma 9.2.2. If in the following diagram βA+ and βC are isomorphisms, then
so is βA:

0 - K0(A) - K0(A+) - K0(C) - 0

0 - K1(SA)
?
βA

- K1(S(A+))
?
βA+

- K1(SC)
?
βC

- 0

So it suffices to prove 9.2.1 for A unital .

This is a special case of the Five Lemma of homological algebra. The proof is a
straightforward diagram chase.

So for the rest of the proof we will assume A is unital, and think of β : [e]→
[fe].

9.2.3. GLn(C(S1, A)) has a local affine structure: loops which are sufficiently
uniformly close together are “linearly homotopic” via the line segment between.
Any homotopy in GL∞(C(S1, A)) can be approximated arbitrarily closely in
the topology of uniform convergence by a “polygonal” homotopy with the same
endpoints. Also, if f is a loop in GLn(A) and g is a loop in Mn(A) which is
sufficiently uniformly close to f , then g is a loop in GLn(A).

Definition 9.2.4. A polynomial loop is a loop of the form f(z) = a0 + a1z +
· · ·+ amz

m with ai ∈M∞(A) and f(z) ∈ GL∞(A)0 for all z. A linear loop is a
polynomial loop of degree 1, i.e. f(z) = a0 + a1z.

The range of βA is contained in the group generated by the linear loops.

Lemma 9.2.5. Every loop can be uniformly approximated arbitrarily closely by
a quotient of polynomial loops. In fact , every loop can be approximated by a
trigonometric polynomial loop of the form

∑N
k=−N akz

k.

Proof. Let L be the set of loops which can be so approximated. L contains all
scalar-valued loops by the Stone–Weierstrass Theorem; L also clearly contains
all constant loops. Then L contains all polygonal loops. �

Lemma 9.2.6. If f and g are polynomial loops, and f ∼h g as loops, then
zmf ∼h zmg as polynomial loops of degree ≤ 2m for some sufficiently large m,
via a polygonal homotopy .

Proof. Approximate the homotopy by a polygonal homotopy, and approximate
the vertices by trigonometric polynomial loops. The polygonal homotopy with
these vertices gives the desired homotopy. �
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Lemma 9.2.7. There is a continuous function µm from the set of polynomial
loops of degree ≤ m to the set of linear loops. f ∼h µm(f).

Proof. If f(z) = a0 + · · ·+ amz
m, identify f with

diag(f, 1, . . . , 1) ∈M(m+1)n(A) ∼= Mm+1(Mn(A)).

Set

µm(f)(z) =



a0 a1 · · · am−1 am
−z 1 · · · 0 0
· · · ·
· · · ·
· · · ·
0 0 · · · −z 1


µm(f) is clearly a linear loop, and f → µm(f) is continuous. We can recover f
from µm(f) by the following process. We have

1 0 · · · 0 −am
0 1 · · · 0 0
· · · ·
· · · ·
· · 1 0
0 0 · · · 0 1

µm(f)



1 0 · · · 0 0
0 1 · · · 0 0
· · · ·
· · · ·
· · 1 0
0 0 · · · z 1

 =



a0 a1 · · · (am−1+amz) 0
−z 1 · · · 0 0
· · · ·
· · · ·
· · z 1 0
0 0 · · · 0 1


Each of these factors can be shrunk to the identity within invertible elements
just by shrinking the off-diagonal term to 0. By repeating the process we obtain
f ∼h µm(f). �

So every equivalence class in K1(SA) is represented by a quotient of linear loops
with denominator zm. Two homotopic loops can be represented in such a way,
for the same m, with the numerators homotopic within the set of linear loops.

Lemma 9.2.8. There is a continuous map γ from the set of linear loops to the
set of idempotent loops. f ∼h γ(f).

Proof. Let f(z) = a+ bz. a+ b ∈ GLn(A)0, so f ∼h (1/(a+ b))(a+ bz), so we
may assume a+ b = 1, a = 1− b, i.e. f(z) = bz+ (1− b) = 1 + (z− 1)b. If z 6= 1,
then f(z) = (1 − z)[(1 − z)−1 − b] ∈ GLn(A), so (1 − z)−1 is not in σ(b). So
σ(z) ∩ {λ | Reλ = 1

2} = ∅. Make e from b by holomorphic functional calculus.
γ(f)(z) = ez + (1− e) ∼h f(z) by a linear homotopy. �

Corollary 9.2.9. Every loop is homotopic to a quotient of an idempotent loop
for a unique homotopy class of idempotents in M∞(A) by zm for some m. So
βA is an isomorphism.

This completes the proof of Bott Periodicity. �

It is interesting to note that even if A is a C∗-algebra, one cannot work
exclusively with unitaries in this proof (at least without a lot of additional work).
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Note that there is no control over how large a matrix algebra one must deal
with in order to handle a given loop in GLn(A). Thus Bott Periodicity is purely a
stable result in general. Some results on stable rank and its relation to K-theory
can shed some light on the necessary size of expansion of the matrix algebras in
certain instances. See [Rieffel 1983b] for a more detailed discussion of this and
related matters.

Note also that even if A is stably finite and unital, so that there is a good order
structure on K0(A), there is no natural order structure on K0(S2A)(V (S2A)
is trivial, so K0(S2A)+ = 0), so the order structure of K0(A) is apparently
completely lost under Bott Periodicity.

There is, however, some vestige of the order structure which remains. If τ
is a trace on A, and τ∗ : K0(A) → R the corresponding state, then τ∗ can be
recovered from K1(SA) by integration: if u ∈ Un(SA) is a smooth loop (any
class can be so represented), then

τ∗([u]) =
1

2πi

∫ 2π

0

τ(u′(t)u(t)−1)dt

We will study this and related matters in 10.10.
For C∗-algebras there is an elegant alternate proof of Bott Periodicity due to

Cuntz (9.4.2).

9.2.10. In the case A = C, the Bott map provides an isomorphism from K0(C)
to K0(C0(R2)). This map can be described as the map which sends [1] to [q]−[p],
where p and q are the projections in M2(C0(R2)+) defined by

p(z) =
[

1 0
0 0

]
, q(z) =

1
1 + zz̄

[
zz̄ z

z̄ 1

]
(R2 is identified with C). q corresponds to the nontrivial line bundle on S2

given by σ1 of 1.1.2(c), or from identifying S2 with CP1 and thus with the space
Pr1(M2) of one-dimensional projections in M2, and taking the line bundle

{(p, x) | x ∈ Range(p)} ⊆ Pr1(M2)× C2.

This q is often called the Bott projection. [q] − [p] is called the Bott element in
K0(C0(R2)).

9.3. Six-Term Exact Sequence

Theorem 9.3.1 (Standard Exact Sequence). Let 0 −→ J
ι−→ A

π−→
A/J −→ 0 be an exact sequence of local Banach algebras. Then the following
six-term cyclic sequence is exact :

K0(J)
ι∗ - K0(A)

π∗- K0(A/J)

K1(A/J)

∂ 6

�π∗
K1(A) �

ι∗
K1(J)
?
∂
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The map ∂ : K0(A/J) → K1(J) is the composition of the suspended index map
∂ : K2(A/J)→ K1(J) with the Bott map.

This follows immediately from 9.2.1 and 8.3.

9.3.2. The connecting map ∂:K0(A/J)→ K1(J) is called the exponential map.
An explicit formula for this map is given by ∂([e]− [pn]) = [exp(2πix)], where e
is an idempotent in M∞((A/J)+) with e ≡ pn mod M∞(A/J) and x ∈M∞(A+)
with π(x) = e. The derivation of this formula is an easy exercise.

If e lifts to an idempotent in M∞(A+), then ∂([e] − [pn]) = 0. The expo-
nential map is the obstruction to (stably) lifting idempotents [projections] from
quotients, just as the index map is the obstruction to (stably) lifting invertibles
[unitaries].

If A is a C∗-algebra, there is an alternate way of viewing the groups K0(A)
and K1(A) using the outer multiplier algebra of A: Ki(A) is isomorphic to K1−i
of the stable outer multiplier algebra of A (12.2.3). The proof uses the six-term
exact sequence and the fact that the K-theory of a stable multiplier algebra is
trivial.

The reader is urged to look ahead to Section 12 and to try problem 12.5.1.
The point of view taken in that section is good motivation for the connections
between K-theory, Ext-theory, and Kasparov theory.

9.4. EXERCISES AND PROBLEMS

9.4.1. Let A be a C∗-algebra. Then there is a split exact sequence

0→ SA→ A⊗ C(S1)→ A→ 0.

Use 8.3.6 and Bott periodicity to compute that

K0(A⊗ C(S1)) ∼= K1(A⊗ C(S1)) ∼= K0(A)⊕K1(A).

This is a special case of the Pimsner–Voiculescu exact sequence (10.2.1), which
tells how to compute the K-theory of a crossed product by Z, and of the Künneth
Theorem for tensor products (23.1.3), which tells how to compute the K-theory
of a general tensor product.

9.4.2. Let u be the unilateral shift on a Hilbert space, and T = C∗(u). T is
called the Toeplitz algebra (it is isomorphic to the C∗-algebra generated by all
Toeplitz operators on the unit disk with continuous symbol).

(a) e = 1 − uu∗ is a one-dimensional projection. T contains K as an essential
ideal, and T/K ∼= C(S1). So there is a short exact sequence

0→ K → T → C(S1)→ 0

This sequence does not split; in fact, this is the “standard” nonsplit extension
of C(S1) by K.
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(b) T is the universal C∗-algebra generated by an isometry, i.e. if v is an isometry
in any C∗-algebra, there is a canonical homomorphism from T onto C∗(v) sending
u to v.

(c) Let q : T → C be the composition of the quotient map from T to C(S1)
followed by evaluation at 1. If j : C → T is the unital embedding, we have
q ◦ j = 1C , so q∗ ◦ j∗ : Ki(C)→ Ki(T )→ Ki(C) is the identity.

(d) Show that j∗ ◦ q∗ : Ki(T )→ Ki(T ) is also the identity, so that j∗ and q∗ are
mutually inverse isomorphisms, as follows.

(1) Let T̂ be the C∗-subalgebra of T ⊗ T generated by K ⊗ T and T ⊗ 1, and
set v = u⊗ 1, f = e⊗ 1 = 1− vv∗, w = e⊗ u, g = e⊗ e. Set

z0 = v(1− f)v∗ + wv∗ + vw∗ + g,

z1 = v(1− f)v∗ + fv∗ + vf.

Then z0 and z1 are self-adjoint unitaries in T̂ , so there is a path (zt) of unitaries
in T̂ from z0 to z1. Set vt = ztv, and let φt be the canonical homomorphism
from T to T̂ sending u to vt. Then φ0(u) = v(1−f)+w, φ1(u) = v(1−f)+g.

(2) Let T̄ be the subalgebra {(x, y) | π(x) = y} of T̂ ⊕ T , where π : T̂ →
T̂ /K ⊗ T ∼= T is the quotient map. T̄ is a split extension of T by K ⊗ T .
Define ψ0, ψ1, ψ, ω : T → T̄ by ψ0(u) = (φ0(u), u), ψ1(u) = (φ1(u), u),
ψ(u) = (v(1−f), u), ω(u) = (w, 0). Then ψ0 and ψ1 are homotopic, ψ0 = ψ+ω
(note that ψ and ω have orthogonal ranges), and ψ1 = ψ + ω ◦ j ◦ q. Thus
ψ∗ + ω∗ = ψ∗ + ω∗ ◦ j∗ ◦ q∗ : Ki(T )→ Ki(T ).

(3) Since T̄ is a split extension of K ⊗ T , ω∗ is injective by 8.3.6, i.e. j∗ ◦ q∗ :
Ki(T )→ Ki(T ) is the identity.

(e) Let T0 = ker q = C∗(u− 1). Then there is a split exact sequence

0 −→ T0 −→ T
q−→ C −→ 0.

Therefore K∗(T0) = 0.

(f) If B is any C∗-algebra, define jB = 1B ⊗ j : B → B ⊗ T , qB = 1B ⊗ q :
B ⊗ T → B. Then just as in (c), (d), (e), we have jB∗ : Ki(B)→ Ki(B ⊗ T ) is
an isomorphism with inverse qB∗, and K∗(B ⊗ T0) = 0. (Use the fact that T is
nuclear to show that tensoring with B preserves the exact sequences.)

(g) Apply the long exact sequence of K-theory to the extension

0→ B ⊗K → B ⊗ T0 → B ⊗ C0(R)→ 0

to obtain an alternate proof of Bott periodicity [Cuntz 1984, § 4].
The Toeplitz algebra is interesting in its own right and is a valuable technical

tool in many K-theory arguments.
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9.4.3. Let A be a commutative Banach algebra with maximal ideal space X.
Then there is a natural homomorphism γ : A → C0(X), the Gelfand trans-
form. γ induces homomorphisms γ∗ : Ki(A) → Ki(C0(X)) ∼= K−ic (X). These
homomorphisms are actually isomorphisms.

That γ∗ : K1(A) ∼= K−1
c (X) is an isomorphism was proved by Arens using the

theory of several complex variables. The other isomorphism can then be obtained
using Bott periodicity (there is also a direct proof due to Grauert). There are two
earlier related theorems, the Shilov Idempotent Theorem, which states that every
idempotent in C0(X) is in the image of γ, and hence that the group of integer
linear combinations of idempotents in A is isomorphic to H0

c (X; Z) ∼= Cc(X,Z),
and the Arens–Royden Theorem, which states that γ induces an isomorphism of
GL1(A)/GL1(A)0 with GL1(C0(X))/GL1(C0(X))0

∼= H1
c (X; Z).

A description of these results and some applications, along with a further dis-
cussion of K-theory for commutative Banach algebras, may be found in [Taylor
1975].

9.4.4. If A and B are C∗-algebras, denote by [A,B] the set of homotopy classes
of ∗-homomorphisms from A to B. Composition gives a well-defined map from
[A,B]× [B,C] to [A,C].

(a) For any A and B, there is a notion of “orthogonal direct sum” on [A,B ⊗
K] making it into an abelian semigroup [use an isomorphism M2(K) = K].
(Compare 15.6.)

(b) A homomorphism from C into a C∗-algebra B is just a choice of projection
in B (the image of 1). So for any B, we may identify [C, B ⊗K] with V (B).

(c) A homomorphism φ from S = C0(R) = C0((0, 1)) into a C∗-algebra B is
just a choice of unitary in B+ which is 1 mod B (the image of f(t) = e2πit under
the extension of φ to φ̃ : C(T) → B+). Thus [S,B ⊗K] may be identified with
K1(B).

(d) Using Bott periodicity, [S, SB ⊗ K] may be identified with K0(B). If B is
unital, this identification agrees with the suspension of the identification induced
by the identification of (b).

Notes for Chapter IV

Some of the exposition of this section is adapted from unpublished lecture
notes of Larry Brown, which were in turn based on Taylor’s article [1975]. The
proof of Bott Periodicity given here is originally due to Atiyah [1968].
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CHAPTER V

K-THEORY OF CROSSED PRODUCTS

10. The Pimsner–Voiculescu Exact Sequence
and Connes’ Thom Isomorphism

In this section, we will develop exact sequences which allow computation of
the K-groups of crossed products of C∗-algebras by R or cyclic groups.

10.1. Crossed Products

We begin with a very brief review of the general theory of crossed products,
in order to establish notation. A complete discussion of the theory can be found
in [Pedersen 1979, Chapter 7].

Let A be a C∗-algebra, G a locally compact group, and α a continuous ho-
momorphism from G into Aut(A), the group of ∗-automorphisms of A with the
topology of pointwise norm-convergence. A covariant representation of the co-
variant system (A,G, α) is a pair of representations (π, ρ) of A and G on the
same Hilbert space such that ρ(g)π(a)ρ(g)∗ = π(αg(a)) for all a ∈ A, g ∈ G.
Each covariant representation of (A,G, α) gives a representation of the twisted
convolution algebra Cc(G,A) by integration, and hence a pre-C∗-norm on this
∗-algebra. The supremum of all these norms is a C∗-norm, and the completion
of Cc(G,A) with respect to this norm is called the crossed product of A by G

under the action α, denoted A ×α G, or sometimes C∗(G,A) or C∗(G,A, α).
The ∗-representations of A×αG are in natural one-one correspondence with the
covariant representations of the system (A,G, α).

If α is a single automorphism of A, we may regard α as giving an action of Z
on A; the crossed product will be called the crossed product of A by α.

Roughly speaking, the idea of the crossed product construction is to embed
A into a larger C∗-algebra in which the automorphisms become inner (where
“inner” means “determined by a multiplier” in the nonunital case). This de-
scription is strictly correct only when G is discrete; in the general case both A

and G are naturally embedded in the multiplier algebra of A×α G.
One can also form the reduced crossed product of A by G, denoted C∗r (G,A)

or C∗r (G,A, α), which is a quotient of the (full) crossed product in general. If
G is amenable, the two crossed products coincide. In this section we will be
almost exclusively concerned with amenable groups (almost always with abelian
groups).

71
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One can also define twisted crossed products using cocycles.

Examples 10.1.1. (a) If the action of G is trivial, then A×αG ∼= A⊗maxC
∗(G);

the reduced crossed product is A⊗minC
∗
r (G). If G is amenable, then C∗(G) and

C∗r (G) coincide and are nuclear, so the maximal and minimal cross norms also
coincide. As a special case, if A = C, the crossed product is just C∗(G).

(b) If A is commutative, i.e. A = C0(X) for a locally compact Hausdorff spaceX,
then α corresponds to a group of homeomorphisms of X. The system (X,G,α)
is called a dynamical system, especially in the case where G is Z or R. A general
covariant system (A,G, α) is sometimes called a C∗-dynamical system.

(c) If G is a semidirect product of groups G = N×αH, then C∗(G) ∼= C∗(N)×α
H. The C∗-algebra of a general group extension is given by a twisted crossed
product. If H = R, then every extension is untwisted; so the C∗-algebra of any
simply connected solvable Lie group can be constructed by successive crossed
products by R. More generally, if G is a simply connected solvable Lie group,
any crossed product A×αG can be written as an iterated crossed product by R.

The most important result about crossed products for our purposes is the Takai
Duality Theorem, a C∗-analog of a theorem of Takesaki about W∗-crossed prod-
ucts. If G is a locally compact abelian group with dual group Ĝ, then there is
a natural action α̂ of Ĝ on A×α G, called the dual action, with α̂ trivial on the
image of A and α̂γ(g) = 〈g, γ〉g for g ∈ G (identifying G with its image in the
multiplier algebra).

Theorem 10.1.2 (Takai Duality). Let (A,G, α) be a covariant system with
G abelian. Then (A×αG)×α̂ Ĝ ∼= A⊗K(L2(G)). So the second crossed product
is stably isomorphic to A, and is stable if G is infinite (if G has n elements, it is
Mn(A)). Under this isomorphism, the second dual action ˆ̂α of G on the second
crossed product is α ⊗ λ, where λ is the action of G on K(L2(G)) coming from
the regular representation of G.

See [Pedersen 1979, 7.9.3] for a discussion and proof.
The reader who is unfamiliar with Takai duality is urged to work out the

details explicitly in the case G = Z2. This simple special case sheds light on the
general situation. Also, this case will be especially important in the development
of KK-theory; for example, Bott Periodicity may be regarded as a special case
of duality for Z2.

10.2. Crossed Products by Z or R
Crossed products have long been used to construct interesting C∗- and W∗-al-

gebras. Unfortunately, it has been rather difficult to obtain any good information
about the internal structure of crossed products. There are rather extensive
(although still incomplete) results about the ideal structure of crossed products,
and in particular some sufficient conditions for a crossed product to be simple;
but until the development of K-theory little could be said about the structure
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of projections in the crossed product, for example. The attempt to describe
all equivalence classes of projections in the irrational rotation algebras (10.11.6)
was one of the primary motivations for the work of Pimsner and Voiculescu.
The solution of this problem was one of the first nontrivial applications of K-
theory to the structure of C∗-algebras. (A few months earlier, Cuntz had used
somewhat similar arguments to calculate the K-groups of the On (10.11.8).) The
Pimsner–Voiculescu work is regarded as a milestone, and as a catalyst for the
subsequent rapid development of K-theory for C∗-algebras.

The two fundamental results which allow computation of the K-theory of
crossed products by Z or R are:

Theorem 10.2.1 (Pimsner–Voiculescu Exact Sequence). Let A be a C∗-
algebra and α ∈ Aut(A). Then there is a cyclic six-term exact sequence

K0(A)
1−α∗ - K0(A)

ι∗ - K0(A×α Z)

K1(A×α Z)

6

� ι∗
K1(A) �

1−α∗
K1(A)
?

Theorem 10.2.2 (Connes’ Thom Isomorphism). If α : R → Aut(A), then
Ki(A×α R) ∼= K1−i(A) (i = 0, 1).

Connes’ Thom Isomorphism is a generalization of Bott Periodicity (the case of
trivial action), and is an analog (though not a generalization) of the ordinary
Thom isomorphism, which says that if E is a K-oriented n-dimensional vector
bundle over X, and E is itself regarded as a locally compact Hausdorff space,
then Ki(E) ∼= Ki+nmod 2(X). The result is a bit surprising at first glance,
since it says that the K-theory of a crossed product by R is independent of
the action. An intuitive argument for this fact is that any action of R can
be continuously deformed to a trivial action, and K-theory is insensitive to
continuous deformations. This rough argument can be used as the basis of a
proof of 10.2.2, using KK-theory [Fack and Skandalis 1981]. We will take an
alternate approach in this chapter, and will return to the KK proof in Section
19.

The Pimsner–Voiculescu (P-V) exact sequence, which predates Connes’ result,
shows that the K-theory of a crossed product by Z is not independent of the
action; but (roughly speaking) it depends only on the induced action on the
K-theory of A. The P-V exact sequence is not in general enough to completely
determine the K-theory of the crossed product, except in special cases (e.g. when
the K-groups of A are free abelian groups); but it is nonetheless a powerful tool
in determining the possibilities.

The P-V exact sequence is a C∗-algebra analog of an exact sequence for the
algebraic K-theory of an algebraic crossed product by Z, due to Farrell and
Hsiang [1970]. The techniques of proof are, however, very different.
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There are a number of proofs known of both 10.2.1 and 10.2.2. The original
proof of Pimsner and Voiculescu [1980a] involved forming a “Toeplitz extension”
by setting B = C0(X), where X = Z ∪ {+∞}, β ∈ Aut(B) leaving +∞ fixed
and left translating on Z. Set C = A⊗B, γ = α⊗ β. If J is the ideal C0(Z) of
B, then I = A⊗ J is an ideal of C invariant under γ, so we have an extension

0 −→ I ×γ Z −→ C ×γ Z −→ Q −→ 0

It is easy to see that Q ∼= A×α Z, and it follows easily from Takai duality that
I ×γ Z ∼= A ⊗ K. The major part of the work is to show that the K-theory of
C×γ Z is naturally isomorphic to the K-theory of A. When these identifications
are made, the P-V exact sequence is just the six-term exact sequence of this
extension. See 19.9.2 for a description of the argument.

Rieffel [1982] has shown how to adapt this proof to give Connes’ result: replace
Z by R in the construction, and then show that the K-theory of C×γR is trivial
so that the connecting maps in the six-term sequence must be isomorphisms.

We will take a somewhat different approach. The P-V exact sequence can
be obtained rather easily from the Thom isomorphism. We will first do this,
develop some variations and consequences of the P-V sequence, and then give
a proof of the Thom isomorphism which is a combination of the arguments of
Rieffel [1982] and unpublished work of Pimsner and Voiculescu.

10.3. The Mapping Torus

The P-V exact sequence can be obtained almost immediately from the Thom
isomorphism by invoking a theorem of Green [1977] on Morita equivalence. We
will give an alternate argument, based on the elementary structure of crossed
products. The concept we need is that of the mapping torus:

Definition 10.3.1. Let α ∈ Aut(A). The mapping torus of α is Mα = {f :
R → A|f(x+ 1) = α(f(x)) for all x ∈ R} ∼= {f : [0, 1]→ A|f(1) = α(f(0))}.

There is an exact sequence 0→ SA→Mα → A→ 0.
We need the following structure theorem for crossed products. If β is an

action of R on a C∗-algebra B, and β is trivial on Z, then β drops to an action
of T = R/Z, also denoted β. β induces an action β̂ of T̂ = Z on B ×β T, i.e. an
automorphism of B ×β T.

Proposition 10.3.2. B×βR is isomorphic to the mapping torus of β̂ on B×βT.

Proof. Represent B faithfully on a Hilbert space H. The regular representation
of B ×β R on H ⊗ L2(R) is faithful, and is obtained by inducing the regular
representation ρ of B ×β Z on H ⊗ L2(Z) to B ×β R. But β is trivial on Z, so
ρ is equivalent to the representation σ of B ⊗C∗(Z) ∼= B ⊗C(T) on H ⊗L2(T)
given by σ(b⊗ 1) = b⊗ 1, σ(1⊗u) = 1⊗M , where M is multiplication by z and
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u is the generator of Z. The induced representation λ acts on

{f : R → H ⊗ L2(T) | f(t+ 1) = (1⊗M)f(t),
∫ 1

0

‖f‖2 <∞}

with action [λ(b)f ](t) = (βt(b)⊗ 1)f(t), [λ(r)f ](t) = f(t− r).
We may identify this Hilbert space with

L2([0, 1])⊗ (L2([0, 1])⊗H) ∼= L2([0, 1]2)⊗H,

interchange the order in which the variables are written, and conjugate by the
unitary U defined by Uf(s, t) = e2πistf(s, t), to convert λ into the representa-
tion µ on L2([0, 1]2) ⊗ H with action [µ(b)f ](s, t) = βt(b)f(s, t), [µ(r)f ](s, t) =
e2πirsf(s, t− r [mod 1]).

For fixed s, the operators µ(b) and µ(r) give operators on L2([0, 1]) ⊗H; for
fixed b or r these are continuous in s; thusB×βR may be regarded as a subalgebra
of C([0, 1],B(L2([0, 1]) ⊗ H)). For fixed s, the operators {µ(b)µ(φ) | b ∈ B,
φ ∈ Cc(R)} generate the canonical copy of B ×β Z in L2([0, 1]) ⊗ H (if φ has
small support, then there is a continuous function ψ on T such that µ(b)µ(φ) is
the canonical action of bψ), so B×βR ⊆ C([0, 1], B×βZ), and for each a ∈ B×βZ
and each s there is an f ∈ B ×β R with f(s) = a. The values of any such f at
0 and 1 match up via β̂, so B ×β R may be identified with a subalgebra of the
mapping torus of β̂. Furthermore, the unitary µ(1) is a multiplier of B ×β R;
this unitary corresponds to the continuous function f(s) = e2πis1. Thus any
continuous scalar-valued function f with f(0) = f(1) is a multiplier. A simple
partition of unity argument shows that B ×β R contains the whole mapping
torus. �

The identical result with virtually the same proof is valid in the case of an action
β of Z which is trivial on nZ. The action drops to an action of Zn; the dual
action β̂ is an action of Ẑn = Zn, i.e. an automorphism β̂ of B×β Zn of order n.

Proposition 10.3.3. B ×β Z is isomorphic to the mapping torus of β̂ on
B ×β Zn.

The details of the proof may be found in [Blackadar 1983a, 7.8.1].
10.3.2 and 10.3.3 are special cases of a general result: if G is a locally compact

abelian group, H a closed subgroup, B a C∗-algebra, and β : G → Aut(B) a
homomorphism with H ⊆ ker(β) (or just with β|H inner), then B ×β G can
be written as a fibered algebra over Ĥ with fiber B ×β (G/H) (cf. [Olesen and
Pedersen 1986]). Presumably a similar result holds in the nonabelian case.

10.4. Proof of the P-V Sequence

We now derive the P-V exact sequence. Suppose α ∈ Aut(A), and let B =
A ×α Z. There is an action β = α̂ of T on B; we may regard β as an action of
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R on B with Z acting trivially. We have B ×β T ∼= A⊗K by Takai duality, and
B ×β R ∼= Mβ̂ . Thus there is a short exact sequence

0 −→ S(A⊗K) −→ B ×β R −→ A⊗K −→ 0

From the Thom isomorphism, we have Ki(B ×β R) ∼= K1−i(B); thus the P-V
exact sequence is just the six-term exact sequence associated to this extension.

It only remains to show that the connecting maps in this exact sequence are
of the form 1− α∗, which comes from the following two propositions.

Proposition 10.4.1. Let α ∈ Aut(A), and let Mα be the mapping torus. If
Ki(SA) is identified with K1−i(A) via the Bott map, then the connecting maps
in the six-term exact sequence

K1(A) - K0(Mα) - K0(A)

K1(A)

∂ 6

� K1(Mα) � K0(A)
?
∂

are of the form 1− α∗.

Proof. α extends uniquely to an automorphism of A+ and hence to Mn(A+).
Let p be a projection in Mn(A+), congruent to 1k. Then the image of [p]− [1k]
in K1(SA) under the connecting map is [exp{2πi(tp + (1 − t)α(p) − 1k)}] =
[exp{2πi(tp− tα(p))}], which is exactly the image of [p]− [α(p)] under the Bott
map. The argument for the other connecting map is similar, or may be obtained
immediately by suspension. �

Proposition 10.4.2. Let α ∈ Aut(A), γ ∈ Aut(K). If Ki(A) is identified with
Ki(A⊗K) in the standard way , then α∗ = (α⊗ γ)∗.

Proof. Since γ is homotopic to 1 (every automorphism of K is induced by a
unitary in B, and U1(B) is connected), α⊗ γ is homotopic to α⊗ 1. �

It is worth explicitly recording the following fact from the discussion above:

Proposition 10.4.3. Let α be an automorphism of a C∗-algebra A. Then
Ki(A ×α Z) ∼= K1−i(Mα) for i = 0, 1. The isomorphism is natural with respect
to covariant homomorphisms.

10.5. Homotopy Invariance

The next simple proposition shows that the mapping torus of α depends only
on the homotopy class of α in Aut(A).

Proposition 10.5.1. Let α, β ∈ Aut(A). If α and β are homotopic, then
Mα

∼= Mβ . More generally , if there is a γ ∈ Aut(A) with α homotopic to
γ−1 ◦ β ◦ γ, then Mα

∼= Mβ .
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Proof. Under the hypotheses, γ0 = β−1◦γ◦α is homotopic to γ1 = γ via a path
{γt}. If f ∈Mα, define φ(f) by [φ(f)](t) = γt(f(t)). Then φ(f) is a continuous
function, and β([φ(f)](0)) = (β◦γ0)(f(0)) = (γ◦α)(f(0)) = γ(f(1)) = [φ(f)](1),
so φ(f) ∈Mβ . φ is clearly an isomorphism. �

10.5.1 gives a somewhat sharper result than the P-V sequence on the extent to
which the K-groups of A×α Z depend on α:

Corollary 10.5.2. The K-groups of A ×α Z depend up to isomorphism only
on the homotopy class of α in Aut(A).

It is not true in general that the K-groups of A×α Z are determined by α∗; see
[Rosenberg and Schochet 1986, 10.6].

10.6. Exact Sequence for Crossed Products by T
A byproduct of our approach to the P-V sequence is an exact sequence for

crossed products by T. If α is an action of T on A, then by regarding α as an
action of R and identifying the K-groups of A×αR with those of A by the Thom
isomorphism, we obtain an exact sequence

K0(A×α T)
1−α̂∗- K0(A×α T) - K0(A)

K1(A)

q∗
6

� K1(A×α T) �
1−α̂∗

K1(A×α T)
?
q∗

where q : A×α R → A×α T is the quotient map. (This sequence is exactly the
P-V sequence for the action α̂, when (A×α T)×α̂ Z is identified with A⊗K by
Takai duality.)

This sequence, however, is of limited use in actually calculating K∗(A×α T),
since each of the K-groups appears in two places in the sequence.

10.7. Exact Sequence for Crossed Products by Finite Cyclic Groups

In the same manner, we can obtain an exact sequence relating the K-theory
of a crossed product by Zn to the K-theory of the corresponding crossed product
by Z.

Theorem 10.7.1. Let α ∈ Aut(A) with αn = 1. Then we have an exact
sequence

K0(A×α Zn)
1−α̂∗- K0(A×α Zn) - K1(A×α Z)

K0(A×α Z)

q∗
6

� K1(A×α Zn) �
1−α̂∗

K1(A×α Zn)
?
q∗

This sequence is not really too useful for computing the K-theory of A ×α Zn,
since these groups appear in four places in the sequence. However, the sequence
can be used to gain some information about the groups.
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Unlike the case of crossed products by Z, the K-theory of A×α Zn does not
depend only on the homotopy class of α in Aut(A): if A is the UHF algebra of
type 2∞ (the CAR algebra), then all automorphisms are homotopic (7.7.5), but
there are many possibilities for K0(A×αZ2) for various α of order 2 (7.7.4). It is
not even true that the K-theory of A×αZn depends only on the homotopy class
of α within the automorphisms of A of order dividing n (G. Segal, unpublished;
communicated by N. C. Phillips).

10.8. Crossed Products by Amalgamated Free Products

Pimsner and Voiculescu [1982] were able to show, by a generalization of
the Toeplitz extension construction, that the following result holds for reduced
crossed products by free groups.

Theorem 10.8.1. Let αj(j = 1, . . . , n) ∈ Aut(A), so that the αj define an action
α of Fn, the free group on n generators, on A. Then the following sequence is
exact , where all crossed products are reduced crossed products:

n⊕
j=1

K0(A)
σ - K0(A) - K0(C∗r (Fn, A))

K1(C∗r (Fn, A))

6

� K1(A) �
σ

n⊕
j=1

K1(A)
?

where σ =
∑n
j=1(1− αj∗).

Corollary 10.8.2. The simple unital C∗-algebra C∗r (Fn) (n ≥ 2) contains no
nontrivial projections.

This corollary verified a conjecture of Kadison. Crossed products were consid-
ered by several authors in an attempt to solve the Kaplansky problem of whether
there exists a simple C∗-algebra with no nontrivial projections. Effros and Hahn
[1967] conjectured that the irrational rotation algebras (10.11.6) were projection-
less, subsequently disproved by the Powers–Rieffel construction. The principal
difficulty faced by these earlier authors was the total lack of tools for studying
projections in crossed products until the P-V work. Kaplansky’s problem was
solved in [Blackadar 1980a; 1981], using a mapping torus construction and prop-
erties of AF algebras. Subsequent examples have been constructed by several
authors (e.g. 10.11.7). Cuntz has also found a much simpler direct proof of 10.8.2
using Fredholm modules [Cuntz 1983b; Connes 1994, IV.5] (cf. 10.11.11).

As a result of the P-V result on crossed products by free groups, there is a
natural conjecture for crossed products by amalgamated free products:

Conjecture 10.8.3. Let G = H ∗L K be the amalgamated free product of
(discrete) groups H and K over L. Let α be an action of G on A. Then for
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either the full or reduced crossed products there is a six-term exact sequence

K0(A×αL) - K0(A×αH)⊕K0(A×αK) - K0(A×αG)

K1(A×αG)

6

� K1(A×αH)⊕K1(A×αK) � K1(A×αL)
?

(where the restriction of α to a subgroup of G is also denoted α). The horizontal
maps are the K-theory maps induced by inclusions and differences of inclusions
respectively .

Special cases of this sequence have been proved. Lance [1983] has proved the
conjecture for free products of “nice” groups if A = C; Lance’s results apply
for free products of cyclic groups. Natsume [1985] extended Lance’s results to
amalgamated free products, including such groups as SL(2,Z) ∼= Z4 ∗Z2 Z6.
Some other cases have been proved by Kasparov [1984b]. Cuntz [1982b] showed
that similar results hold for full crossed products (10.11.11); he also introduced
the concept of K-amenability (20.9) to compare the K-theory of full and reduced
crossed products. Waldhausen [1978] has obtained related results in the purely
algebraic setting.

10.9. Proof of the Thom Isomorphism

We prove the Thom isomorphism by means of a series of reductions. As in
[Rieffel 1982], if α is an action of R on a C∗-algebra A, we form the Wiener–Hopf
extension as follows. Let C = C0(R ∪ {+∞}), and let τ be the action of R on
C obtained by fixing +∞ and translating R. Let CA = C ⊗ A, γ the diagonal
action τ ⊗ α. CA has an invariant ideal SA = C0(R) ⊗ A; we also denote the
action of R on SA by γ.

Lemma 10.9.1. SA×γ R ∼= SA×τ⊗1 R ∼= A⊗K.

Proof. The first isomorphism is given by sending g ∈ Cc(R, Cc(R, A)) ⊆
SA×γ R to g̃, where [g̃(s)](t) = α−t([g(s)](t)). The second isomorphism comes
from Takai duality. �

Thus the six-term exact sequence for the extension

0 −→ SA×γ R −→ CA×γ R −→ A×α R −→ 0

becomes

K1(A) - K1(CA×γ R) - K1(A×α R)

K0(A×α R)

exp 6

� K0(CA×γ R) � K0(A)
?
index

The Thom isomorphism amounts to the statement that exp and index are iso-
morphisms.
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Lemma 10.9.2. If , for every A and α, the map index in the above exact sequence
is surjective, then for every A and α the maps exp and index are isomorphisms.

Proof. Suppose index is always surjective. Then K1(A ×α R) = 0 implies
K0(A) = 0. Applying this fact with A replaced by A×α R and α replaced by α̂,
and applying Takai duality, we have that K1(A) = 0 implies that K0(A×αR) = 0
for any A and α. Since suspension (with trivial action) commutes with crossed
products, we also have that K0(A) = 0 implies K1(A ×α R) = 0 for any A and
α. Apply these implications with A replaced by CA and α replaced by γ (recall
that K∗(CA) = 0 since CA is contractible) to conclude that K∗(CA×γ R) = 0
for any A and α. The result now follows from exactness. �

So we have reduced the problem down to showing that index is always surjective;
by exactness this is the same as showing that the map φ : A→ CA×γ R defined
in 10.9.1 induces the zero map on K-theory. The argument which follows is due
to Pimsner and Voiculescu (unpublished); I am grateful to M. Rieffel for calling
this proof to my attention and for developing the exposition given here.

We may describe φ concretely as follows. Set E(s, t) = es/2e−tχ(t)χ(t− s) ∈
L1(R2), where χ is the characteristic function of (0,∞); then E defines an ele-
ment of C0(R)×τR (even though E is not continuous in t, E can be approximated
in norm by elements of L1(R, Cc(R)) ⊆ C0(R) ×τ R), and in fact E is a “stan-
dard” one-dimensional projection in C0(R) ×τ R ∼= K. Then φ may be taken
to be given by the formula [φ(a)](s, t) = αt(a)E(s, t). φ maps A into the corner
E(CA×γ R)E of CA×γ R.

There is an embedding µ of A into the multiplier algebra M(CA ×γ R) as
“constant functions”, i.e. if g ∈ Cc(R × (R ∪ {+∞}), A) ⊆ CA ×γ R, then
[µ(a)g](s, t) = ag(s, t), [gµ(a)](s, t) = g(s, t)αs(a).

Let B = CA×γ R + µ(A) + C1 ⊆M(CA×γ R). Then B is a split extension

0 - CA×γ R - B � - Ã - 0

and therefore the map i∗ : K0(CA ×γ R) → K0(B) is injective. Thus we need
only show that ψ∗ : K0(A)→ K0(B) is the zero map, where ψ = i ◦φ. What we
will actually show is that µ∗ = µ∗ + ψ∗.

We define a function F by F (s, t) = e−s/2χ(s)χ(t− s).

Lemma 10.9.3. F defines an element of C0(R ∪ {+∞})×τ R.

Proof. The difficulty is similar to the problem with E, namely that F is not
continuous in t. But if Gε(s, t) = e−s/2gε(s)gε(t − s), where gε agrees with χ

except on [0, ε] where it is linear, then Gε → F as ε→ 0. �

We have F ∗(s, t) = es/2χ(−s)χ(t). Now define

S = 1− F ∈ (C0(R ∪ {+∞})×τ R)∼.

Lemma 10.9.4. S∗S = 1, SS∗ = 1− E.
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The proof is a simple computation.
We define Eε = 1

εE
(
s
ε ,

t
ε

)
, Fε = 1

εF
(
s
ε ,

t
ε

)
, Sε = 1 − Fε. Then, as above,

S∗εSε = 1, SεS∗ε = 1− Eε.
Now suppose A is unital. We may then regard C0(R)×τ R in a natural way

as a subalgebra of CA×γ R, and hence we may regard Eε, Fε, Sε as elements of
B. Set ωε(a) = Sεµ(a)S∗ε , [φε(a)](s, t) = αt(a)Eε(s, t), ψε = i ◦ φε.

Lemma 10.9.5. ωε is a ∗-homomorphism from A into (1−Eε)B(1−Eε), ψε a
∗-homomorphism from A into EεBEε, and ωε and ψε are point-norm continuous
in ε (for ε > 0).

Proof. Obvious. �

Lemma 10.9.6. ω∗ = µ∗ as maps from K0(A) to K0(B).

Proof. If p is a projection in Mn(A) ∼= A ⊗Mn, then (S ⊗ 1)(µ ⊗ 1)(p) is a
partial isometry from (µ⊗ 1)(p) to (ω ⊗ 1)(p), so µ∗([p]) = ω∗([p]). �

If we set µε = ωε + ψε, then µε is a point-norm continuous path of ∗-homo-
morphisms from A to B (note that ωε and ψε have orthogonal ranges), and we
have µε∗ = ωε∗ + ψε∗ = µ∗ + ψ∗. The next lemma shows that µε∗ = µ∗, so that
ψ∗ = 0, completing the proof that index is surjective in the unital case.

Lemma 10.9.7. As ε→ 0, µε → µ in the point-norm topology .

Proof. We need to show that Sεµ(a)S∗ε + ψε(a) → µ(a) for each a ∈ A. It
suffices to show that for every a ∈ A,

‖Sεµ(a)S∗ε − SεS∗εµ(a)‖ → 0

‖ψε(a)− Eεµ(a)‖ → 0

We need a sublemma for both parts:

Lemma 10.9.8. For any a ∈ A, limε→0
1
ε

∫∞
0
‖a− α−s(a)‖e−s/2εds = 0.

Proof.

1
ε

∫ ∞
0

‖a− α−s(a)‖e−s/2εds

=
1
ε

∫ √ε
0

‖a− α−s(a)‖ e−s/2εds+
1
ε

∫ ∞
√
ε

‖a− α−s(a)‖ e−s/2εds

≤ sup
0<s<

√
ε

‖a− α−s(a)‖ 1
ε

(−2ε)e−s/2ε
∣∣√ε
0

+
2
ε
‖a‖ (−2ε)e−s/2ε

∣∣∞√
ε

= sup
0<s<

√
ε

‖a− α−s(a)‖ 2(1− e−1/2
√
ε) + 4 ‖a‖ e−1/2

√
ε

As ε→ 0, sup0<s<
√
ε ‖a− α−s(a)‖ → 0, so both terms approach 0. �
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Proof of 10.9.7 (cont.). Suppose a ∈ A. Then

‖Sεµ(a)S∗ε − SεS∗εµ(a)‖ ≤ ‖µ(a)S∗ε − S∗εµ(a)‖
‖µ(a)(1− F ∗ε )− (1− F ∗ε )µ(a)‖ = ‖µ(a)F ∗ε − F ∗ε µ(a)‖

Using the formula for F ∗ε and the fact that the norm in CA×γ R is dominated
by the norm in L1(R, CA), we have

‖µ(a)F ∗ε − F ∗ε µ(a)‖ ≤
∫ ∞
−∞

[
sup
t
‖(a− αs(a)) 1

εe
s/2εχ(−s)χ(t)‖

]
ds

=
1
ε

∫ ∞
−∞
‖a− αs(a)‖χ(−s)es/2εds

=
1
ε

∫ ∞
0

‖a− α−s(a)‖e−s/2εds

This integral goes to 0 by 10.9.8.
We now consider the other expression. First note that

lim
ε→0

[sup
t≥0
{‖αt(a)− a‖e−t/ε}] = 0

so for any δ > 0 there is an ε0 such that for all ε < ε0, supt≥0{‖αt(a)−a‖e−t/ε} <
δ.

The second expression can be written

‖αt(a)Eε(s, t)− Eε(s, t)αs(a)‖

In a similar way as above, this expression is dominated by∫ ∞
−∞

[
sup
t
‖(αt(a)− αs(a))Eε(s, t)‖

]
ds

=
∫ ∞
−∞

[
sup
t
‖(αt(a)− αs(a)) 1

εχ(t)es/2εe−t/εχ(t− s)‖
]
ds.

Consider the integrals
∫∞

0
and

∫ 0

−∞ separately.
For

∫∞
0

, we need only consider t ≥ s ≥ 0, so the integrand becomes

sup
t≥s

{
‖αt(a)− αs(a)‖ 1

ε e
s/2εe−t/ε

}
= sup

r≥0

{
‖αr+s(a)− αs(a)‖ 1

ε e
s/2εe−(r+s)/ε

}
= sup

r≥0
{‖αr(a)− a‖er/ε} 1

ε e
−s/2ε

≤ δ 1
εe
−s/2ε for ε < ε0.

So
∫∞

0
≤
∫∞

0
δ 1
εe
−s/2εds = 2δ for ε < ε0.
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For
∫ 0

−∞, the χ(t− s) is irrelevant since we must only consider t ≥ 0 because
of the χ(t) term. We have

‖αt(a)− αs(a)‖ e−t/ε ≤
{
‖αt(a)− a‖+ ‖a− αs(a)‖

}
e−t/ε

≤ ‖αt(a)− a‖ e−t/ε + ‖a− αs(a)‖
≤ δ + ‖a− αs(a)‖ for ε < ε0.

So
∫ 0

−∞ ≤
∫ 0

−∞(‖a − αs(a)‖ + δ) 1
εe
s/2εds =

∫ 0

−∞ ‖a − αs(a)‖ 1
εe
s/2εds + 2δ for

ε < ε0. This integral goes to 0 by 10.9.8. �

We have now proved that index is surjective whenever A is unital. For general
A, we have a commutative diagram

K1(A×α R) - K1(A+ ×α R) - K1(C∗(R))

K1(K) - K0(A)
?

- K0(A+)
?

- K0(K)
?

with exact rows, where the vertical maps are given by index . We know that the
last two index maps are surjective, and in fact the last one must be an isomor-
phism since both groups in the last column are isomorphic to Z. Furthermore,
the map from K0(A) to K0(A+) is injective since K1(K) = 0. A simple diagram
chase then shows that the first index map must also be surjective.

This completes the proof of the Thom isomorphism. �

It is interesting to note that we can obtain an alternate proof of Bott Periodicity
from this argument. The only place we used Bott Periodicity in the proof of the
Thom isomorphism was in 10.9.2. We could have instead used the long exact
sequence of K-theory in the argument of 10.9.2 to conclude from the surjectivity
of index that Ki+1(A ×α R) ∼= Ki(A) for all A, α, i. Applying this result to a
trivial action (with i = 0) yields Bott Periodicity.

10.10. Order Structure and Traces on A×α Z
It is a highly nontrivial matter to determine the order structure onK0(A×αZ).

Even if the action is trivial, so that A×α Z ∼= C(S1, A), there is no known way
to calculate the order structure. For example, if A = C(T3), then K0(A) ∼= Z4

with strict ordering from the first coordinate; but K0(C(T4)) ∼= Z8 is perforated
(6.10.2).

One can, however, obtain quite a bit of partial information: it is (at least
theoretically) possible to calculate the range of any state on K0(A×α Z) which
comes from a tracial state on the crossed product (by [Blackadar and Rørdam
1992], every state on K0 arises this way). In good cases this calculation can be
done rather easily and gives complete information on the order structure.

The results of this section are due to Pimsner [1985], based on earlier work of
Connes [1981] (see also [Exel 1985] and [Kishimoto and Kumjian 1998]). Special
cases of these calculations were done by Pimsner–Voiculescu [1980a] and Elliott
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[1984]. Pimsner’s results are actually more general than those described here;
the most general results are for reduced crossed products by free groups, and
the results require use of Connes’ cyclic cohomology. For simplicity, we will only
consider crossed products by Z, and we will not get into cyclic cohomology at
all.

Since order structures and states on K0(A) only make good sense when A

is unital, we will only consider unital C∗-algebras, although some of the results
carry through to the nonunital case.

10.10.1. We begin with a brief review of the de la Harpe–Skandalis determinant
associated with a trace [Harpe and Skandalis 1984]. If τ is a tracial state on A

which is invariant under α, then there is a canonical extension of τ to a tracial
state on A ×α Z (the extension is defined by τ

(∑
anU

n
)

= τ(a0)). While this
may not be the only extension, it turns out that any other extension defines
the same state on K0(A ×α Z). Conversely, of course, any tracial state on the
crossed product restricts to an invariant tracial state on A. Any trace on A

extends uniquely to Mn(A) (the extended trace has norm n). We will use the
same symbol τ to denote the original trace and its canonical extensions, and also
to denote the corresponding state of K0.

If τ is an invariant trace on A, we define a function Λτ : K0(A ×α Z) ∼=
K1(Mα)→ R by

Λτ ([u]) =
1

2πi

∫ 1

0

τ(u′(t)u(t)−1) dt

where u is a piecewise-smooth path in U∞(Mα) = {f : [0, 1] → U∞(A) | f(1) =
α(f(0))} (any unitary in U∞(Mα) is homotopic to one of these). It is easy to
check that Λτ is a homomorphism which extends the map τ∗ : K0(A)→ R.

Similarly, we obtain

∆τ : U∞(A)0 → R/τ(K0(A))

defined by

∆τ (u) = ρ

[
1

2πi

∫ 1

0

τ(ξ′(t)ξ(t)−1) dt

]
where ξ : [0, 1] → U∞(A) is any piecewise smooth path of unitaries from 1 to u
and ρ : R → R/τ(K0(A)) is the quotient map.

An alternate formula for ∆τ is

∆τ

(∏
e2πixk

)
=
∑

ρ(τ(xk)) for xk = x∗k

It is clear that ∆τ is a group homomorphism. It is also easy to check that
if A is commutative, so that the determinant Det : U∞(A) → U1(A) is defined,
then ∆τ = ∆τ ◦Det.

10.10.2. Now suppose 0 −→ J
j−→ B

q−→ A −→ 0 is an exact sequence of
C∗-algebras. If τ is a trace on A, and u ∈ U∞(J) with j(u) ∈ U∞(B)0 (i.e.
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[u] ∈ ker j∗ : K1(J) → K1(B)), then we may define ∆τ (u) = ∆τ◦q(j(u)). If
u ∈ U∞(J)0, one may choose the map ξ of 10.10.1 to lie within U∞(J) and so
∆τ (u) = 0; thus ∆τ drops to a well defined group homomorphism from ker j∗ to
R/τ ◦ q(K0(B)).

Proposition 10.10.3. The following sequence is exact :

0 −→ τ ◦ q(K0(B)) −→ τ(K0(A))
ρ−→ ∆τ (ker j∗) −→ 0

(where the first map is the inclusion of two subgroups of R, and ρ is the restriction
of the quotient map from R to R/τ ◦ q(K0(B))).

Proof. From the six-term exact sequence of K-theory, we have ker j∗ =
∂(K0(A)). If p is a projection in M∞(A), choose x = x∗ ∈M∞(B) with q(x) = p.
Then u = e2πix ∈ ker j∗, and ∆τ (u) = ρ(τ(p)), so ρ(τ(K0(A)) ⊆ ∆τ (ker j∗). Dif-
ferences of such elements fill up all of ∆τ (ker j∗). �

We now come to the main result:

Theorem 10.10.4. Let α ∈ Aut(A), and let τ be an invariant tracial state of
A. Then the map ∆α

τ from ker(1− α∗) ⊆ K1(A) to R/τ(K0(A)) defined by

∆α
τ ([u]) = ∆τ (uα(u−1))

(u ∈ U∞(A), uα(u−1) ∈ U∞(A)0) is a well defined group homomorphism, and
the following sequence is exact :

0 −→ τ(K0(A)) −→ τ(K0(A×α Z))
ρ−→ ∆α

τ (ker(1− α∗)) −→ 0

Proof. Apply 10.10.3 to the extension in 10.4 corresponding to the P-V exact
sequence. �

If A is commutative, we can be more precise:

Theorem 10.10.5. Under the conditions of 10.10.4, suppose A = C(X) is
commutative. Then ρ(τ(K0(A×αZ)) is equal to the image of U1(A) in ker(1−α∗)
under ∆α

τ . So to compute the range of τ on K0(A×α Z), we need only compute
τ(K0(A)) and ∆τ (uα(u−1)) for one u in each component of U1(A) which is left
fixed by α, i .e. for each element of H1(X; Z) left fixed by α∗.

Proof. This follows immediately from the fact that ∆τ = ∆τ ◦Det. �

Corollary 10.10.6. Let X be a compact space with H1(X; Z) = 0, α a home-
omorphism of X, and τ the trace on C(X) corresponding to an invariant proba-
bility measure (such a measure always exists). Then the range of the dual trace
on K0(C(X) ×α Z) is the same as the range of τ on K0(C(X)). If X is con-
nected and α is minimal , then C(X)×α Z is a simple unital C∗-algebra with no
nontrivial projections.
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Proof. The first part follows immediately from 10.10.5. For the second part,
if X is connected the range of τ on K0(C(X)) is Z (the value on any projection
is the dimension of the corresponding vector bundle). If α is minimal, then
C(X)×α Z is a simple unital C∗-algebra by [Pedersen 1979, 8.11.2]. If τ is the
dual trace to any invariant measure, then the range of τ on K0(A ×α Z) is Z;
since τ must be faithful it follows that 1 is a minimal projection. �

10.11. EXERCISES AND PROBLEMS

10.11.1. Let A be a stably finite unital C∗-algebra, and α ∈ Aut(A). Show using
the P-V sequence that K1(A×αZ) is nontrivial. Conclude that a crossed product
of a unital AF algebra by Z is never AF. (A crossed product of a nonunital AF
algebra by Z can be AF: if Z acts on C0(Z) by translation, the crossed product
is isomorphic to K by Takai duality.)

10.11.2. Let A be the simple unital AF algebra A3 defined in 7.6, and define
σ : D2 → D2 by σ(a, b) = (a,−2b). Then σ is an automorphism of the scaled
dimension group of A, so there is an automorphism α of A with α∗ = σ by 7.3.2.
Set B = A×α Z.
(a) No (nonzero) power of α∗ is the identity, so no power of α is inner; thus by
[Olesen and Pedersen 1978] (cf. [Pedersen 1979, 8.11.12]) B is simple.
(b) B is stably finite since the trace on A is invariant under α and thus extends
to a trace on B.
(c) By the P-V sequence we have K0(B) ∼= D2/(0⊕3D) ∼= D⊕Z3. Thus a stably
finite simple unital C∗-algebra can have torsion in its K0-group. (See [Elliott
1996] and its references for many more examples of this type.)
(d) Show that the ordering on K0(B) ∼= D ⊕ Z3 is strict ordering from the first
coordinate; the order unit is (1, 0).

Using a similar construction one can obtain a stably finite simple unital C∗-
algebra with n-torsion in its K0-group, for any n > 2 (hence also for n = 2).

10.11.3. The following question about AF algebras is open:
Question. Let A be an AF algebra, σ an automorphism of the scaled ordered
group K0(A) with σn = 1. Is there an automorphism α of A with α∗ = σ and
αn = 1?

This question is important in studying the algebraic structure of Aut(A).

10.11.4. (a) Regard Mk(C(S1)) ∼= C(S1,Mk) as

{f : [0, 1]→Mk | f continuous, f(0) = f(1)}.

Define φk : Mk(C(S1))→M2k(C(S1)) by

[φk(f)](t) = ut · diag
(
f
(
t

2

)
, f
(
t+ 1

2

))
· u∗t

where ut is as in 3.4.1. φk is called a standard twice-around embedding. (More
generally, one could define an r-times-around embedding.)
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(b) Let B = lim−→(M2n(C(S1)), φ2n). B is called the Bunce–Deddens algebra of
type 2∞. Show that B is simple, unital, and stably finite, and that K0(B) ∼= D,
K1(B) ∼= Z. (Given any generalized integer q, one can similarly define a Bunce–
Deddens algebra of type q, whose K0-group is Z(q) and whose K1 is Z. The
classification and structure of Bunce–Deddens algebras resembles that of UHF
algebras.)

(c) Show that B is isomorphic to C(S1) ×ρ G, where G is the group of all 2n-
th roots of unity (for all n) acting on S1 by translation (rotation). The other
Bunce–Deddens algebras can similarly be obtained as crossed products of C(S1)
by dense torsion subgroups of T acting by translation [Green 1977]. Dually, B
is isomorphic to C(X)×τ Z, where X is the 2-adic integers and Z ⊆ X acts by
translation. The Bunce–Deddens algebras can also be obtained as C∗-algebras
generated by weighted shifts [Bunce and Deddens 1975].

10.11.5. (a) Let α ∈ Aut(C(S1)) be defined by [α(f)](z) = f(z̄), i.e. α corre-
sponds to reflection across the x-axis. Show that D = C(S1) ×α Z2 is isomor-
phic to C∗(Z2 ∗ Z2) (6.10.4), and that K1(D) is trivial. However, D ×α̂ Z2

∼=
M2(C(S1)), so K1(D×α̂Z2) ∼= Z. Thus a crossed product of a unital C∗-algebra
with trivial K1 by a finite group can have nontrivial K1.

(b) The embedding φk : Mk ⊗ C(S1) → M2k ⊗ C(S1) commutes with 1 ⊗ α;
thus there is an induced symmetry β of the Bunce–Deddens algebra B of type
2∞ such that A = B ×β Z2 (which is simple) has trivial K1. A×β̂ Z2

∼= M2(B)
(∼= B) by Takai duality; so even the crossed product of a very nice stably finite
simple unital C∗-algebra with trivial K1 (connected unitary group) by Z2 can
have nontrivial K1 (disconnected unitary group).

(c) Show that K0(A) ∼= D ⊕Z with strict ordering from the first coordinate, by
writing A as an inductive limit of copies of M2n ⊗ C∗(Z2 ∗ Z2) under “twice-
around” embeddings. Thus A has the same K-theory as the AF algebra A4 of
7.6, and β̂∗ is the automorphism of D ⊕ Z defined by β̂∗(a, b) = (a,−b).
(d) A is an AF algebra [Blackadar 1990] (and hence is isomorphic to A4). Since
B = A ×β̂ Z2, the crossed product of an AF algebra by a symmetry need not
be AF (alternately, the fixed-point subalgebra of a symmetry of an AF algebra
need not be AF).

This example in part inspired the extensive classification program of G. Elliott,
the subject of a great deal of attention in recent years. See [Elliott 1996] for a
survey.

10.11.6. Let θ be an irrational number between 0 and 1. Consider the home-
omorphism αθ of S1 given by αθ(z) = e2πiθz, i.e. rotation by 2πθ. Set Aθ =
C(S1)×αθ Z. Aθ is called the irrational rotation algebra with angle 2πθ.

(a) Aθ is simple since αθ is minimal. Show that any two unitaries u, v in a C∗-
algebra satisfying uv = e2πiθvu generate a C∗-subalgebra canonically isomorphic
to Aθ.
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(b) Use the P-V exact sequence to calculate K0(Aθ) ∼= K1(Aθ) ∼= Z2.

(c) Show that Aθ has a unique trace τ , the dual trace to Lebesgue measure on
S1 (the only measure invariant under αθ).

(d) Let u(z) = z. Then [u] generates K1(C(S1)) ∼= Z. uαθ(u−1) = e2πiθ1, so
∆αθ
τ ([u]) = θ. Conclude from 10.10.5 that τ(K0(Aθ)) = Z + Zθ. Hence from

(b), τ maps K0(A) isomorphically onto Z + Zθ.
(e) Conclude that Aθ1 ∼= Aθ2 if and only if θ1 = θ2 or θ1 = 1− θ2.

The Powers–Rieffel construction [Rieffel 1981] shows that if λ ∈ (Z + Zθ) ∩
[0, 1], then there is a projection in Aθ of trace λ, so that K0(Aθ) is actually
isomorphic to Z + Zθ as an ordered group. Rieffel [1983a] also showed that
the Aθ have cancellation (6.5), so that two projections in a matrix algebra are
unitarily equivalent if and only if they have the same trace.

The irrational rotation algebras come up naturally in several interesting con-
texts. For example, the foliation C∗-algebra of a Kronecker foliation of T2 is the
stable algebra of an irrational rotation algebra [Connes 1982]. Irrational rotation
algebras are a natural setting for Connes’ noncommutative differential geometry
[Connes 1994]. Irrational rotation algebras are AT algebras, inductive limits of
direct sums of matrix algebras over C(T) [Elliott and Evans 1993]. There is
much fascinating structure yet to be explored in these algebras.

It is also interesting to study higher-dimensional analogs of the Aθ, sometimes
called “noncommutative tori” (cf. [Elliott 1984; Rieffel 1988]).

10.11.7. There exists a minimal homeomorphism α of the 3-sphere [Fathi and
Herman 1977]. By 10.10.6, A = C(S3)×α Z is a simple unital C∗-algebra with
no nontrivial projections.

A similar example, also due to Connes [1982, § 12], is obtained by taking Γ
to be a discrete cocompact subgroup of SL(2,R) such that the quotient V =
SL(2,R)/Γ is a homology 3-sphere (e.g. the group of products of an even number
of hyperbolic reflections across the sides of a regular triangle with corner angles
π/4 in the Poincaré disk). Let α be the homeomorphism of V given by left
translation by

[
1
1

0
1

]
.

Calculate the K-theory of these C∗-algebras. It is not true that K0(A) ∼=
Z, i.e. there are projections in matrix algebras over A which are not (stably)
equivalent to “diagonal” projections. Show that a simple unital projectionless
C∗-algebra A constructed by the method of 10.10.6 never has K0(A) ∼= Z.

10.11.8. Fix n with 1 < n < ∞; let On be as in 6.3.2, and let A be the UHF
algebra with dimension group Z(n∞) (7.5).

(a) There is an automorphism α of A ⊗ K with (A ⊗ K) ×α Z ∼= On ⊗ K:
choose a one-dimensional projection e in Mn, and let B be the completion of
the ∗-algebra of sums of formal tensors

⊗
k∈Z xk, where xk ∈ Mn, xk = e for

sufficiently large negative k, and xk = 1 for sufficiently large positive k. Then
B ∼= A⊗K (B can be alternately described as an inductive limit of algebras of
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the form Bi = ⊗k≥−iMn). If α is the tensor product shift automorphism on B,
then B ×α Z ∼= On ⊗K.
(b) α∗ is multiplication by n on Z(n∞); thus from the P-V exact sequence
K0(On) ∼= Z(n∞)/(1 − n)Z(n∞)

∼= Zn−1. Show that this isomorphism sends
[1] to a generator of Zn−1.
(c) Conclude that On is not isomorphic to Mk(Om) for any k if n 6= m, and that
Mk(On) 6∼= On unless k and n− 1 are relatively prime.
(d) If p and q are nonzero projections in Mk(On), then p ∼ q if and only if
[p] = [q] in K0(On) (6.11.9). Thus Mk(On) ∼= On if k ≡ 1 mod n− 1.
(e) The P-V exact sequence also yields that K1(On) = 0.
(f) Mk(On) ∼= On if k and n − 1 are relatively prime. M(n∞) ⊗ On ∼= On. In
fact, if A is a purely infinite separable nuclear C∗-algebra in the bootstrap class
N (22.3.4), with (K0(A), [1A]) ∼= (Zn−1, 1) and K1(A) = 0, then A ∼= On (this
is a special case of the remarkable classification in [Kirchberg 1998]).

These results were first proved by Cuntz [1981b] before development of the P-
V sequence; the arguments were somewhat similar to those necessary to obtain
the P-V sequence in the above situation. Cuntz also studied the simple C∗-
algebra O∞ generated by a sequence of isometries with mutually orthogonal
ranges. K0(O∞) ∼= Z, K1(O∞) = 0.

10.11.9. Let A = (aij) be an n × n matrix of 0’s and 1’s. OA is defined to
be the universal C∗-algebra generated by n partial isometries s1, . . . , sn with
the relations s∗i si =

∑n
j=1 aijsjs

∗
j [Cuntz and Krieger 1980; Cuntz 1981a]. If A

consists entirely of 1’s, then OA = On.
(a) OA is simple if A is irreducible, except in degenerate cases.
(b) As in 10.11.8, OA ⊗ K can be written as a crossed product B ×α Z for a
stable AF algebra B. The dimension group of B is the stationary direct limit
(Zn, φA), where φA is multiplication by At. α∗ corresponds to the shift on this
direct limit.
(c) From the P-V exact sequence, we obtain that K0(OA) ∼= Zn/(1−At)Zn and
K1(OA) ∼= ker(1−At) (regarded as an endomorphism of Zn). So if Det(1−At) =
0, K0(OA) and K1(OA) are infinite groups.

The OA arise naturally in the study of topological Markov chains [Cuntz and
Krieger 1980].

10.11.10. There exist many infinite-dimensional stably finite simple unital C∗-
algebras A with K∗(A) ∼= K∗(C), i.e. K0(A) ∼= Z, K1(A) = 0 . (Such a C∗-
algebra necessarily contains a minimal projection.) Here is perhaps the simplest
example.
(a) Let F∞ be the free group on a countable number of generators. Then the
commutator subgroup of F∞ is isomorphic to F∞. Let Gn = F∞ and φn,n+1 :
Gn → Gn+1 be an isomorphism onto the commutator subgroup, and let G =
lim−→(Gn, φn,n+1).
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(b) Show that K0(C∗r (F∞)) ∼= (Z, 1) as a scaled ordered group, and

K1(C∗r (F∞)) ∼= Z∞,

with the generators of F∞ (regarded as unitaries in the C∗-algebra) as generators
of K1. (See 10.11.11(h).)
(c) C∗r (G) ∼= lim−→(C∗r (Gn), φn,n+1). Show that

φn,n+1∗ : K0(C∗r (Gn))→ K0(C∗r (Gn+1))

is the identity map on Z, and that φn,n+1∗ : K1(C∗r (Gn)) → K1(C∗r (Gn+1)) is
the zero map (use 3.4.1). Thus K0(C∗r (G)) ∼= Z and K1(C∗r (G)) = 0.

This example is not nuclear. A more interesting nuclear example is given in
[Jiang and Su 1997].

10.11.11. K-Theory of Amalgamated Free Products.

(a) Let A, B, D be C∗-algebras, and φ1 : D → A, φ2 : D → B embeddings.
Regard D as a C∗-subalgebra of A and B via φi. The amalgamated free product
of A and B over D, denoted A ∗D B, is the universal C∗-algebra generated by
homomorphic images of A and B which agree on D. (It can be formally defined
as the completion of the algebraic free product of A and B with respect to an
evident pre-C∗-norm.) If D = 0, then A ∗ B = A ∗D B is the free product of
A and B; if A and B are unital and D = C1, then A ∗C B is the unital free
product of A and B. Show that the natural homomorphisms ι1 : A → A ∗D B

and ι2 : B → A ∗D B are injective [Blackadar 1978, 3.1], so we may identify A

and B with C∗-subalgebras of A∗DB. (See [Blackadar 1985b; Loring 1997] for a
general discussion of universal C∗-algebras defined by generators and relations.)
(b) Suppose there are retractions r1 : A → D and r2 : B → D. (This will be
automatic in the case of free products, taking ri = 0.) Then there is an induced
retraction r : A ∗D B → D. Let P = {(a, b) | r1(a) = r2(b)} ⊆ A ⊕ B be
the pullback (15.3); let i : D → P be the diagonal inclusion, and g = i ◦ r :
A ∗D B → P . Define another map k : A ∗D B → P by setting k(a) = (a, r1(a)),
k(b) = (r2(b), b), and using the universal property of A ∗D B. Finally, define
f : P →M2(A ∗D B) by f((a, b)) = diag(a, b).
(c) (1⊗ k) ◦ f : P →M2(P ) sends (a, b) to diag((a, r2(b)), r1(a), b)); this homo-
morphism is homotopic to 1P ⊕ (k ◦ g) via conjugation by the unitaries (1, ut),
where ut is as in 3.4.1. So k∗ ◦ f∗ − k∗ ◦ g∗ is the identity map on Ki(P ).
(d) h1 = f ◦ k : A ∗D B → M2(A ∗D B) is homotopic to h0 = 1A∗DB ⊕ (g ◦ k)
via the path of homomorphisms ht defined by ht(a) = diag(a, r1(a)), ht(b) =
ut ·diag(b, r2(b)) ·u∗t , using the universal property of A ∗D B. So f∗ ◦ k∗− g∗ ◦ k∗
is the identity map on Ki(A ∗D B).
(e) Conclude that k∗ : Ki(A ∗D B) → Ki(P ) is an isomorphism with inverse
(f∗ − g∗), so there is an exact sequence

0 - Ki(D)
(φi∗,−φ2∗)- Ki(A)⊕Ki(B)

ι1∗ + ι2∗- Ki(A ∗D B) - 0
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which splits naturally. If D = 0, then P = A⊕B, so Ki(A∗B) ∼= Ki(A)⊕Ki(B)
for i = 0, 1, If A and B are unital and D = C1, then K0(A ∗C B) ∼= (K0(A) ⊕
K0(B))/〈([1A],−[1B ])〉 and K1(A ∗C B) ∼= K1(A)⊕K1(B).

(f) If G1, G2, and H are discrete groups and φi : H → Gi is an embedding,
then C∗(G1 ∗H G2) ∼= C∗(G1) ∗C∗(H) C

∗(G2). In particular, C∗(G1 ∗ G2) ∼=
C∗(G1) ∗C C∗(G2). In this case, there are retractions r1 and r2 given by the
trivial representation.

(g) Conclude that if G1 and G2 are discrete groups, then K0(C∗(G1 ∗ G2)) ∼=
(K0(C∗(G1)) ⊕K0(C∗(G2)))/〈([1C∗(G1)], −[1C∗(G2)])〉 and K1(C∗(G1 ∗ G2)) ∼=
K1(C∗(G1))⊕K1(C∗(G2)). In particular, K0(C∗(Fn)) ∼= Z, K1(C∗(Fn)) ∼= Zn.

(h) If G1 and G2 are amenable, then the quotient map λ : C∗(G1 ∗ G2) →
C∗r (G1 ∗ G2) induces an isomorphism on K-theory (20.9), so the results of (g)
are valid also for C∗r (Fn).

The results of this problem are due to Cuntz [1982b; 1983b]. Related results
were also obtained by Brown [1981]. The existence of retractions hypothesis can
be relaxed [Germain 1997].

10.11.12. Develop exact sequences for the K-theory of twisted crossed products.
Very little is known about this situation.

10.11.13. [Cuntz 1987] (a) Let A be a C∗-algebra, and let QA = A∗A be the free
product (10.11.11) of A with itself. QA has the universal property that any pair
(φ, ψ) of ∗-homomorphisms from A to a C∗-algebra B define a unique homo-
morphism q(φ, ψ) from QA to B. In particular, there is a ∗-homomorphism
q(idA, idA) from QA to A. Let qA be the kernel of q(idA, idA). Q and q

are functors: if φ : A → B is a ∗-homomorphism, there is a natural induced
∗-homomorphism qφ : QA→ QB which takes qA into qB.

(b) There are natural ∗-homomorphisms ι = ι1 and ι = ι2 from A to QA as in
10.11.11(a). For x ∈ A, define q(x) = ι(x) − ι(x). Then q(x) ∈ qA, and qA is
the ideal of QA generated by {q(x) : x ∈ A}. q is not a homomorphism; in fact,
it is more like a derivation: q(xy) = ι(x)q(y) + q(x)ι(y)− q(x)q(y).

(c) There are natural ∗-homomorphisms π0 = q(idA, 0) and π1 = q(0, idA) from
QA to A, and by restriction from qA to A. π0(q(x)) = x, π1(q(x)) = −x. There
is also a symmetry τ of QA, taking qA to itself, obtained by interchanging the
two copies of A. ι = τ ◦ ι and π1 = π0 ◦ τ .

(d) By 10.11.11(e) the maps π0 ⊕ π1 : QA→ A⊕ A and ψ : A⊕ A→ M2(QA)
defined by ψ(x, y) = diag(ι(x), ι(y)) are homotopy inverses, and hence give iso-
morphisms between K∗(QA) and K∗(A⊕A).

(e) K∗(QA) is naturally isomorphic to K∗(qA)⊕K0(A) by applying the 6-term
K-theory exact sequence to the split exact sequence

0 - qA - QA �
ι
- Ã - 0 .
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The second summand corresponds to ι∗. Thus π0∗ : K∗(qA) → K∗(A) is an
isomorphism, with inverse ι∗ − ι∗.
(f) By (e), K0(qC) ∼= K0(C) ∼= Z, and there is a canonical generator e ∈ K0(qC)
corresponding to 1C . The map that takes [φ] ∈ [qC, B ⊗ K] (9.4.4) to φ∗(e) ∈
K0(B) is an isomorphism from [qC, B ⊗K] onto K0(B).

(g) QC = {f ∈ C([0, 1],M2) | f(0) = diag(α, 0), f(1) = diag(β, γ)} is the
universal C∗-algebra generated by two projections. (QC)+ is the algebra of
6.10.4. qC = {f ∈ QC | α = 0} = {f ∈ C0((0, 1],M2) | f(1) diagonal} ∼=
C0(R) ×σ Z2, where σ is the “flip” automorphism (σ(f))(t) = f(−t). QC,
(QC)+, and qC are all semiprojective (4.7.1) [Loring 1997].

11. Equivariant K-Theory

In this section, we develop the basics of equivariant K-theory for compact
groups. Readers interested in a more extensive development of the theory may
consult [Phillips 1987] (on which this section is largely based), [Segal 1968], and
[Rosenberg and Schochet 1986]. Some further developments can also be found
in Section 20, including a description of an equivariant theory for noncompact
groups.

The first notions of equivariant K-theory were due to Atiyah and Segal; see
[Segal 1968].

Throughout this section (except in 11.10) we will assume that all groups are
compact.

11.1. Group Algebras

We begin by reviewing the structure of L1(G) and C∗(G) for G compact.
Recall that every (unitary) representation of G is a direct sum of irreducible rep-
resentations, and that every irreducible representation is on a finite-dimensional
space. If χ is the normalized character of an irreducible representation of G,
then χ is a self-adjoint central idempotent in L1(G), and χL1(G)χ is a direct
summand of L1(G) which is isomorphic to Mn, where n is the dimension of the
representation. The summands corresponding to different irreducible represen-
tations are orthogonal, and the span of all the summands is dense in L1(G). We
may summarize the situation in the following proposition.

Proposition 11.1.1. Let G be a compact group. Then there is an increasing
net 〈pi〉 of central projections of L1(G) such that the following conditions are
satisfied .

(a) piL
1(G)pi = piC

∗(G)pi is finite-dimensional .
(b) (pi) forms an approximate identity for C∗(G), and more generally for A×αG

for any covariant system (A,G, α) with A unital (where L1(G) is embedded in
the standard way in the crossed product).
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(c)
⋃
piL

1(G)pi is dense in L1(G), and more generally
⋃
piL

1(G,A, α)pi is
dense in L1(G,A, α) for any covariant system, although (pi) is not an ap-
proximate identity for L1(G) in general .

If G is second countable, then 〈pi〉 can be chosen to be an increasing sequence.

Corollary 11.1.2. C∗(G) is an AF algebra, a direct sum of matrix algebras.
∪piL1(G)pi is a local Banach algebra under either the L1-norm or the C∗-norm.
Thus the standard inclusion L1(G) → C∗(G) induces an isomorphism on K-
theory . If A is L1(G), C∗(G), or the dense local subalgebra, then K0(A) ∼=⊕

χ∈G Z and K1(A) = 0.

Definition 11.1.3. The representation ring R(G) of G is the ring whose el-
ements are formal differences of equivalence classes of finite-dimensional repre-
sentations of G, with direct sum and tensor product as the ring operations. The
trivial one-dimensional representation is the multiplicative identity.

By decomposing a representation into a direct sum of irreducibles, the additive
group of R(G) can be identified with K0(A) as in 11.1.2.

11.2. Projective Modules

There are three standard ways of viewing elements of K0(A), as (differences of
equivalence classes of) idempotents, projective modules, or (if A is commutative)
vector bundles. All three have natural analogs in the equivariant setting.

Suppose A is a unital C∗-algebra. If E is a finitely generated projective A-
module, i.e. a direct summand of An for some n (we consider only right modules),
then E has a uniquely determined topology independent of how it is realized as
a direct summand. (E is a Banach space under many equivalent natural norms.)
Write L(E) for the set of all bounded linear operators on E and B(E) for the
subalgebra of L(E) consisting of module maps. If E is realized as a summand of
An, then E = pAn for some projection p in Mn(A); thus B(E) is isomorphic to
the C∗-algebra pMn(A)p. L(E) also, of course, has a strong operator topology
which is independent of how the norm on E is chosen.

Definition 11.2.1. Let (A,G, α) be a C∗-covariant system, with G compact
and A unital. A (finitely generated) projective (A,G, α)-module is a pair (E, λ),
where E is a (finitely generated) projective A-module and λ is a strongly con-
tinuous homomorphism from G into the invertible elements in L(E), such that

λg(ea) = λg(e)αg(a) for g ∈ G and a ∈ A.

(Note that λg is not in general a module homomorphism.)

We sometimes suppress the λ and simply refer to E as a projective (A,G, α)-
module. The words “finitely generated” will also always be understood for pro-
jective modules.
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Proposition 11.2.2. If (E, λ) is a projective (A,G, α)-module, then E becomes
an L1(G,A, α)-module under

eφ =
∫
G

λ−1
g (e)α−1

g (φ(g)) dg for φ ∈ L1(A,G, α) and e ∈ E.

Proof. It is clear that the formula makes E into a Cc(G,A)-module. For any
fixed e, {λg(e) | g ∈ G} is bounded, so that ‖λ‖∞ = sup ‖λg‖ < ∞ by the
Banach–Steinhaus Theorem. If φ ∈ Cc(G,A), then we have

‖eφ‖ ≤
∫
G

‖λg−1(e)‖ ‖φ(g)‖ dg ≤ ‖λ‖∞‖e‖ ‖φ‖1.

So the action of Cc extends to L1. �

The standard way to form projective (A,G, α)-modules is as follows. Let π be
a representation of G on a finite-dimensional vector space V . Then E = V ⊗ A
(tensor product over C) is a right A-module, and becomes a projective (A,G, α)-
module if given the diagonal action of G. The modules constructed in this way
may be regarded as “free modules.”

We will now show that every projective (A,G, α)-module is a direct summand
of one of these “free modules.”

Proposition 11.2.3. If (E, λ) is a projective (A,G, α)-module, then there is
a finite-dimensional representation space V of G such that E is equivariantly
isomorphic to a direct summand of V ⊗A.

Proof. Let {e1, . . . , ek} be a set of generators for E as an A-module, and let
{pn} be a set of projections as in 11.1.1. We first claim that if n is sufficiently
large, then {e1pn, . . . , ekpn} generate E. This is a consequence of the projectivity
of E: since the map T from Ak to E sending (a1, . . . , ak) to

∑
eiai has a bounded

right inverse, any sufficiently small perturbation of T also has a right inverse and
is therefore surjective.

For such an n, let V be the subspace of E spanned by {eipnL1(G)pn} (where
L1(G) acts on E as in 11.2.2). Then V is finite-dimensional, and is invariant for
the action of G (G multiplies L1(G) into itself, and pn is central).

Give V ⊗A the diagonal action of G to make it into a “free” (A,G, α)-module,
and define S : V ⊗A→ E by S(e⊗ a) = ea. Then S is an equivariant surjective
A-module homomorphism. S has a right inverse by projectivity, and by averaging
an arbitrary right inverse over G one obtains an equivariant right inverse, which
exhibits E as a direct summand of V ⊗A. �

11.3. Projections

As in the non-equivariant case, projective (A,G, α)-modules can be identified
with projections. If p is a G-invariant projection in B(V ⊗A) ∼= L(V )⊗A, then
p(V ⊗ A) is a projective (A,G, α)-module; 11.2.3 shows that every projective
(A,G, α)-module arises in this way.
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If W is another finite-dimensional representation space of G, we may identify
the set of A-module homomorphisms from V ⊗A to W ⊗A with L(V,W )⊗A.
There is a natural action of G on L(V,W )⊗A, given by

g · t = (λg ⊗ αg) ◦ t ◦ (µg ⊗ αg)−1.

With this action, the modules p(V ⊗A) and q(W⊗A) are isomorphic as (A,G, α)-
modules if and only if there are G-invariant elements u ∈ L(V,W ) ⊗ A and
v ∈ L(W,V )⊗A with uv = p, vu = q. If there exist such u, v, then p and q are
said to be Murray–von Neumann equivalent.

11.4. G-Vector Bundles

Suppose A = C(X) is commutative. The actions of G on C(X) exactly cor-
respond to continuous actions of G on X, continuous meaning that the function
(g, x) → g · x from G × X to X is continuous. A G-action on X is always
understood to be continuous.

Definition 11.4.1. Let X be a space with a G-action. A G-vector bundle is a
vector bundle E over X with a G-action by vector bundle automorphisms such
that the projection map p : E → X is equivariant.

There is an obvious notion of morphism and isomorphism of G-vector bundles.
To each vector bundle E over X there corresponds naturally a finitely gen-

erated projective C(X)-module, the set Γ(E) of continuous sections. If E is
a G-vector bundle, then Γ(E) has a natural induced G-action making Γ(E) a
projective (C(X), G, α)-module.

There is an equivariant version of Swan’s Theorem:

Theorem 11.4.2. Let X be a compact space with G-action α. Then the corre-
spondence [E] → [Γ(E)] is a one-one correspondence between the isomorphism
classes of G-vector bundles over X and the isomorphism classes of projective
(C(X), G, α)-modules.

See [Phillips 1987, 2.3.1] for a proof; the proof is basically the same as Swan’s
with the G-actions woven in. This result is due to Atiyah, at least in the case
where G is finite [Atiyah 1967, p. 41].

11.5. Definition of Equivariant K0

Let (A,G, α) be a covariant system, with A unital. There is an obvious
binary operation on the set of projective (A,G, α)-modules, direct sum. In the
idempotent picture, one defines the direct sum of p ∈ L(V )⊗A and q ∈ L(W )⊗
A to be diag(p, q) ∈ L(V ⊕ W ) ⊗ A. The corresponding notion for G-vector
bundles is (ordinary) Whitney sum. It is clear that this binary operation respects
equivalence classes, and drops to an associative binary operation on the set
V G(A) of equivalence classes, making V G(A) into a commutative semigroup
with identity (the 0-module).
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Definition 11.5.1. KG
0 (A) is the Grothendieck group of V G(A). If A = C(X),

we sometimes write K0
G(X) for KG

0 (C(X)). If it is necessary to explicitly keep
track of the action, we will write KG

0 (A,α).

KG
0 (A) is not only an abelian group; it has a natural structure as an R(G)-

module, with the action of [W ] ∈ R(G) sending p(V ⊗A) to (1⊗p)(W ⊗V ⊗A).
Note that if C is given the trivial G-action, then KG

0 (C) ∼= R(G).

Proposition 11.5.2. KG
0 is a functor from unital covariant G-systems to R(G)-

modules.

Proof. If φ : A→ B is an equivariant ∗-homomorphism, we define

φ∗[p(V ⊗A)] = [p((V ⊗A)⊗A B)] = [(1L(V ) ⊗ φ)(p)(V ⊗B)].

It is easy to check that this map has all desired properties. �

Note that for V ⊗ A and W ⊗ A to represent the same element of KG
0 (A),

it is not enough that there exists an equivariant isomorphism from L(V ) ⊗ A
to L(W ) ⊗ A. For example, let G = T1 and A = C with trivial action. If
V and W are one-dimensional representation spaces corresponding to different
representations, then L(V ) ∼= L(W ) ∼= C with trivial action, but [V ] 6= [W ] in
KG

0 (C) = R(G).
We now define KG

0 (A) for nonunital A just as in the nonequivariant case:

Definition 11.5.3. KG
0 (A) is the kernel of π∗ : KG

0 (A+)→ KG
0 (C), where A+

has the induced action from α and C has the trivial action.

It is easy to see that this definition agrees with the previous one if A is unital,
and one obtains a functor from covariant G-systems to R(G)-modules.

11.6. Homotopy Invariance

Almost all of the results of Chapter II have straightforward analogs in the
equivariant case. The only one which will be relevant for our purposes is the
analog of 4.3.2:

Proposition 11.6.1. Let A be a (local) Banach algebra, and H a subgroup of
Aut(A). If e and f are H-invariant idempotents in A and ‖e− f‖ < 1/‖2e− 1‖,
then there is an H-invariant invertible element u ∈ Ã with ueu−1 = f .

Proof. The proof is identical to the proof of 4.3.2; note that the v defined there
is H-invariant. �

Corollary 11.6.2. Let (A,G, α) and (B,G, β) be covariant systems, and φt
(0≤ t ≤1) a pointwise-continuous path of equivariant ∗-homomorphisms from A

to B. Then φ0∗ = φ1∗.
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11.7. Relation with Crossed Products

In this paragraph we prove the main result of this section, that equivariant K-
theory can be identified with the ordinary K-theory of a crossed product. This
theorem is due to Atiyah if A is commutative and G is finite, P. Green [1982]
in the case A is commutative and G arbitrary, and to Green and J. Rosenberg
(unpublished, but see [Rosenberg 1984]) and independently to P. Julg [1981] in
the general case.

Theorem 11.7.1. Let (A,G, α) be a covariant system (with G compact). There
is a natural isomorphism KG

0 (A) ∼= K0(A×α G).

Proof. In view of 11.1.2, we need only show that there is a natural isomorphism
of KG

0 (A) with K0(L1(G,A, α)). It suffices to prove the result for A unital, so
we make this assumption. If (E, λ) is a projective (A,G, α)-module, we let Φ(E)
be E with the L1(G,A, α)-module structure defined in 11.2.2. We will show that
Φ is the desired isomorphism.

We first show that Φ(E) is a finitely generated projective module. Since
Φ preserves direct sums, it suffices to show this for E = V ⊗ A (11.2.3), and
we may in addition assume that the representation of G on V is irreducible.
If χ is the normalized character of the complex conjugate Ṽ of V , and p is a
minimal projection in the matrix algebra χL1(G)χ, then L1(G)p ∼= Ṽ as left
L1(G)-modules; so V ∼= (L1(G)p). Define φ : (L1(G)p) ⊗ A → pL1(G,A, α)
by φ(f ⊗ a) = f∗a, where f∗ is the adjoint of f ∈ L1(G) ⊆ L1(G,A, α) and
a is regarded as a multiplier of L1(G,A, α) in the evident way [Pedersen 1979,
7.6.3]. In other words, φ(f ⊗ a)(h) = f(h−1)αh(a). φ is linear since the two
conjugations cancel out. We will show that φ is an L1(G)-module isomorphism;
thus Ψ(V ⊗A) is projective.

To prove that φ is L1(G)-linear, let a ∈ A, f ∈ (L1(G)p), x ∈ L1(G,A, α), π
the left regular representation of G. We have

φ((f ⊗ a)x)(g) = φ

[∫
G

αh−1(ax(h))⊗ πh−1(f) dh

]
(g)

=
∫
G

f(hg−1)αgh−1(ax(h)) dh = (φ(f ⊗ a)x)(g).

To construct an inverse ψ for φ, let {ξ1, . . . , ξn} be an orthonormal basis for
L1(G)p, mij(g) = 〈πgξi, ξj〉. We may assume m11 = p. Then

ψ(x) =
1
n

n∑
1

mi1 ⊗ xi,

where

xi =
∫
G

mi1(h−1)α−1
h (x(h)) dh.

Thus Φ is a well defined homomorphism from V G(A) to V (L1(G,A, α)).
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To show that Φ is a bijection, let E be an L1(G,A, α)-module of the form
p(Cm ⊗ L1(G,A, α)); we may assume p ≤ pi for some i (11.1.1). Make E

and Cm ⊗ pnL
1(G,A, α) into (A,G, α)-modules using the action of G and A

as multipliers on L1(G,A, α). If pi =
∑n
j=1 χj is the decomposition of pi into

minimal projections, and Vj is the representation space corresponding to χj , then
Cm ⊗ pnL1(G,A, α) ∼=

⊕n
j=1(Ṽj)m ⊗ A as (A,G, α)-modules, and is therefore

finitely generated projective. E is a direct summand of this module. This process
actually yields an inverse for Φ. �

11.8. Module Structure on K0(A×α G)

Theorem 11.7.1 only establishes an isomorphism on the level of abelian groups.
We now indicate how the R(G)-module structure on K0(A×αG) corresponding
to the natural one on KG

0 (A) may be explicitly described.
Suppose V is a finite-dimensional representation space of G. We may assume

V is a Hilbert space of dimension n and the representation π is unitary. Then
L(V )⊗A is a C∗-algebra with a canonicalG-action, the diagonal action δ, and the
embedding a→ 1⊗a is equivariant; thus there is a homomorphism φ : A×αG→
(L(V )⊗A)×δG. But δ is exterior equivalent [Pedersen 1979, 8.11.3] to β = 1⊗α,
so (L(V )⊗A)×δ G is canonically isomorphic to (Mn⊗A)×β G ∼= Mn(A×αG)
via a homomorphism ψ. The standard embedding η : A ×α G → Mn(A ×α G)
induces an isomorphism.

Theorem 11.8.1. The action of multiplication by [V ] on K0(A×α G) given by
[V ] · x = (η−1

∗ ◦ ψ∗ ◦ φ∗)(x) defines an R(G)-module structure on K0(A ×α G)
which makes the isomorphism of 11.7.1 an R(G)-module isomorphism.

The proof is straightforward but rather involved, and is omitted. See [Phillips
1987, 2.7].

Example 11.8.2. Let H be a closed subgroup of G, and let A = C(G/H) with
obvious G-action by translation. Then KG

0 (A) ∼= R(H) as R(G)-modules, where
R(H) is viewed as an R(G)-module by restriction of representations from G to
H.

If G is abelian, there is a much simpler description of the R(G)-module structure
on K0(A×αG). In this case, Ĝ is a (discrete) group, and R(G) may be identified
with the group ring of Ĝ. There is a natural action of Ĝ on A ×α G, the dual
action α̂, which defines an R(G)-module structure on K0(A×α G).

Proposition 11.8.3. This R(G)-module structure coincides with the previously
defined structure. So if γ ∈ Ĝ, then the action of γ (regarded as an element of
R(G)) on K0(A×α G) is given by γ · x = (α̂γ)∗(x).

Proof. Suppose A is unital. If (E, λ) is a projective (A,G, α)-module, then
γ ·E is E with G-action (γλ)g(e) = 〈γ, g〉λg(e), so the corresponding L1(A,G, α)-
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module Φ(γ · E) is E with module structure

eφ =
∫
G

〈γ, g〉−1λ−1
g (e)α−1

g (φ(g))dg

But 〈γ, g〉−1α−1
g (φ(g)) = α−1

g ((α̂−1
γ (φ))(g)), so this module structure coincides

with the module structure on (α̂γ)∗Φ(E).
If A is nonunital, then apply the above argument to A+ to see that the module

structures agree on KG
0 (A) ⊆ KG

0 (A+). �

11.9. Properties of Equivariant K-Theory

Because of the natural isomorphism of KG
0 (A) with K0(A ×α G), we have

analogs of the most important properties of ordinary K-theory:

Proposition 11.9.1 (Stability). Let (A,G, α) be a covariant system. Then
the morphism η : A → A ⊗ K sending a to a ⊗ p induces an isomorphism
η∗ : KG

0 (A)→ KG
0 (A⊗K) of R(G)-modules (where the action of G on A⊗K is

α⊗ 1).

Actually this result remains true even if the action of G on K is nontrivial, as
long as p is chosen to be invariant (so that η is equivariant).

Proposition 11.9.2 (Continuity). Let (Ai, G, αi) be a directed system of
covariant systems, and (A,G, α) = lim−→(Ai, G, αi) in the obvious sense. Then
KG

0 (A) ∼= lim−→KG
0 (Ai) as R(G)-modules.

Definition 11.9.3. If (A,G, α) is a covariant system, set KG
1 (A) = KG

0 (SA)
(where G acts trivially on C0(R)).

It is possible to give an alternative definition of KG
1 (A) in terms of invertible

elements (11.11.2).

Theorem 11.9.4 (Bott Periodicity). There is a natural R(G)-module iso-
morphism KG

0 (A) ∼= KG
1 (SA) for any covariant system (A,G, α).

There is an important generalization of this theorem, due to Atiyah [1968] (cf.
20.3.2):

Theorem 11.9.5. Let V be a finite-dimensional complex vector space with a
representation of G, viewed as a locally compact G-space. Then K0

G(V ) ∼= R(G)
and K1

G(V ) = 0. If A is a G-algebra, and C0(V )⊗A is given the diagonal action,
then KG

0 (C0(V )⊗A) ∼= KG
0 (A).

Theorem 11.9.6 (Standard Exact Sequence). Let (A,G, α) be a covariant
system, and let J be an invariant ideal of A. Then there are R(G)-module maps
∂i making the following six-term sequence of R(G)-modules exact :

KG
0 (J) - KG

0 (A) - KG
0 (A/J)

KG
1 (A/J)

∂0
6

� KG
1 (A) � KG

1 (J)
?
∂1



100 V. K-THEORY OF CROSSED PRODUCTS

This sequence is natural with respect to covariant maps of short exact sequences.

Theorem 11.9.7. If α and β are actions of G on A which are exterior equiva-
lent , then there is a natural isomorphism KG

0 (A,α) ∼= KG
0 (A, β).

Direct proofs of these results can be given, but (except for 11.9.5, which is best
done by Atiyah’s method or using KK-theory) it is easiest to use the correspon-
dence with the crossed products. The only thing which needs to be checked is
that the maps in the exact sequence and the Bott map are R(G)-module maps,
which is straightforward to verify.

11.10. Equivariant K-Theory for Noncompact Groups

Topologists have been almost exclusively concerned with compact groups in
studying equivariant K-theory; the noncompact case has been a rather over-
looked area. To the extent to which the subject has been considered, it has
been a very difficult problem to give natural and useful definitions for equivari-
ant K-theory for noncompact groups. There is one obvious starting point from
11.7: the equivariant K-theory of a covariant system could be defined to be the
K-theory of the crossed product. These groups are sometimes called the “an-
alytic” equivariant K-groups. The problem then becomes a matter of defining
“topological” K-groups in some manner analogous to the compact case, and then
showing that the topological groups coincide with the analytic ones. (For many
applications the analytic groups are quite unnatural to work with and are often
difficult to compute; a good topological definition, possibly involving classifying
spaces, is usually much more useful.)

A reasonable definition of equivariant K-theory for proper actions on locally
compact spaces can be given in terms of vector bundles (actually in terms of
continuous fields of Hilbert spaces); see [Phillips 1989]. For the more general
situation, see [Baum and Connes 1982] (cf. 24.4). It is difficult, for example, to
develop a theory which will even satisfactorily treat the case of R acting trivially
on a point.

An additional problem in the general case is the proper definition of the
representation ring of a noncompact group.
KK-Theory can be used to shed much light on the situation of equivariant

K-theory, including the definition of the representation ring. We will discuss
equivariant KK-theory in Section 20.

11.11. EXERCISES AND PROBLEMS

11.11.1. Give the most general equivariant versions of all of the results of Chap-
ter II. Some have analogs valid for arbitrary subgroups of the automorphism
group, while others require averaging and so will be valid only for compact
groups.

11.11.2. Give a definition of KG
1 (A) in terms of invertible elements, and give

direct proofs of the results of 11.9 (cf. [Phillips 1987]).
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11.11.3. Let V be a finite-dimensional G-vector space, so that B = L(V ) is a
G-algebra. Let Bn = B ⊗ · · · ⊗ B (n factors). Show that KG

0 (Bn) ∼= R(G),
KG

1 (Bn) = 0 for any n, and compute the R(G)-module map from R(G) to itself
induced by the map Bn ∼= Bn ⊗ 1 → Bn+1. Let A = lim−→Bn; then A is a UHF
algebra. Compute KG

0 (A) using 11.9.2.
More generally, if G is a compact group and α is a product-type action on

the UHF algebra A, then KG
0 (A) can be given the structure of an ordered R(G)-

module; this ordered module can be calculated in many cases and used to classify
certain kinds of actions of compact groups on AF algebras.

These problems have been studied in [Handelman and Rossmann 1984] and
[Wassermann 1989]; special cases were considered in [Fack and Maréchal 1979;
1981; Renault 1980].
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CHAPTER VI

MORE PRELIMINARIES

We have decided to collect all the preliminary results needed for Ext-theory and
Kasparov theory into a single chapter, even though not all of the results will be
needed immediately. We have done this since the three sections of this chapter
are closely related and it is more efficient to do everything at once.

In Chapter VII, only parts of Sections 12 and 13 will be needed. Section 14
is not required (except for 15.13) until KK-theory (Sections 17ff.), which also
requires all of Sections 12 and 13.

The reader who so desires may skip over this chapter, returning on an ad hoc
basis as needed.

12. Multiplier Algebras

12.1. Introduction

Recall [Pedersen 1979, 3.12] that the multiplier algebra M(A) of A is the
maximal C∗-algebra containing A as an essential ideal. The strict topology on
M(A) is the topology generated by the seminorms ‖|x‖|a = ‖ax‖ + ‖xa‖ for
a ∈ A.

The outer multiplier algebra Q(A) of A is the quotient M(A)/A. We will
write Q for the Calkin algebra Q(K) = B/K.

Examples 12.1.1. (a) If A is unital, then M(A) = A. M(A) is always unital,
so if A is nonunital M(A) 6= A. (In fact in this case M(A) is generally much
larger than A: for example, M(A) is never separable if A is nonunital [Pedersen
1979, 3.12.12].)

(b) If A = C0(X), then M(A) = C(βX), where βX is the Stone–Čech compact-
ification of X. The strict topology on bounded subsets of M(A) is the topology
of uniform convergence on compact subsets of X.

(c) Generalizing (b), if A = C0(X)⊗B, then M(A) is the set of strictly contin-
uous functions from βX to M(B) [Akemann et al. 1973].

(d) M(K) = B; the strict topology is the σ-strong-∗ topology.

Proposition 12.1.2. If xi is a bounded sequence of self-adjoint elements in
M(A) and S is a total subset of A, then xi converges strictly in M(A) if and
only if xis is a norm-Cauchy sequence in A for all s ∈ S.
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The simple proof is left to the reader.

Definition 12.1.3. The stable multiplier algebra Ms(A) is the multiplier al-
gebra of A ⊗ K. The stable outer multiplier algebra Qs(A) is the quotient
M(A⊗K)/(A⊗K).

Since M(A⊗B) contains a canonical copy of M(A)⊗M(B), we always have a
copy of 1⊗ B inside Ms(A) for any A. We also have Mn(Ms(A)) ∼= Ms(A) for
all n. So Ms(A) and Qs(A) are properly infinite (6.11).

12.2. K-Theory and Stable Multiplier Algebras

Proposition 12.2.1. If A is any C∗-algebra, K0(Ms(A)) = K1(Ms(A)) = 0.

Proof. Let vi be a sequence of isometries in 1 ⊗ B ⊆ Ms(A) with orthogonal
ranges. If p is any projection in Ms(A), set q =

∑
vipv

∗
i . Set

w =
[

0 0
v1

∑
vi+1v

∗
i

][
p 0
0 q

]
.

(The sums
∑
vipv

∗
i and

∑
vi+1v

∗
i converge in the strict topology to multipliers

of A⊗K.) Then w∗w = diag(p, q) and ww∗ = diag(0, q); hence [p] + [q] = [q] in
K0(Ms(A)). The same argument works in matrix algebras, so K0(Ms(A)) =0.
A similar argument works for unitaries, showing that K1(Ms(A)) =0. �

With some additional work, one can do better: the unitary group of Ms(A) is
always (norm-)contractible [Cuntz and Higson 1987]; cf. [Mingo 1987].

It is easy to see that U1(Ms(A)) is path-connected in the strict topology:

Proposition 12.2.2. Let A be a C∗-algebra, and u a unitary in Ms(A). Then
there is a strictly continuous path (ut) of unitaries in Ms(A) with u0 = 1 and
u1 = u.

Proof. Let (vt), for 0 < t ≤ 1, be a σ-strong-∗ continuous path of isometries in
B with pt = vtvt∗ → 0 strongly as t→ 0. For example, let H = L2([0, 1]),

[vt(f)](s) =
{ 1√

t
f(s/t) for s ≤ t,

0 for s > t.

(Here pt is the projection onto L2([0, t]).) Set wt = vt ⊗ 1, qt = pt ⊗ 1 in
B ⊗M(A) ⊆M(K ⊗A), and let ut = wtuw

∗
t + (1− qt). �

We now consider the K-theory exact sequence corresponding to the extension
0 → A ⊗ K → Ms(A) → Qs(A) → 0. Because of 12.2.1, the connecting maps
from Ki(Qs(A)) to K1−i(A) are isomorphisms, so we have:

Corollary 12.2.3. If A is any C∗-algebra, then Ki(A) ∼= K1−i(Qs(A)) for
i = 0, 1.
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Actually, in computing K0(Qs(A)) it is not necessary to stabilize: by 6.11.7,
the equivalence classes of infinite projections in Qs(A) form a complete set
of representatives for all elements of K0(Qs(A)). If A is unital or commu-
tative (and perhaps in general) the same is true for K1 since K1(Qs(A)) ∼=
U1(Qs(A))/U1(Qs(A))0 by [Mingo 1987] in this case.

12.2.4. The conclusion of Corollary 12.2.3 for i = 0 is sometimes taken as the
definition of K0(A). The whole theory with the exception of the ordering on K0

can be elegantly developed in this manner. In fact, considering K-theory as a
special case of KK-theory leads to essentially this approach.

The groups Ki(Qs(A)) can be alternately described in a way which motivates
KK-theory. K1(Qs(A)) ∼= K0(A) may be thought of as the group of equiva-
lence classes of “Fredholm operators” in Ms(A) (ones whose image in Qs(A)
is invertible); K0(Qs(A)) ∼= K1(A) is the group of equivalence classes of ele-
ments of Ms(A) which are projections mod A ⊗ K. In each case the group
operation is “orthogonal direct sum” (using the embedding Ms(A) ⊕Ms(A) ⊆
M2(Ms(A)) ∼= Ms(A)), and the equivalence relation is the one generated by
homotopy and orthogonal addition of “degenerate elements” (actual invertible
elements or projections). 3.4.6 is needed to prove the equivalence.

12.3. σ-Unital C∗-Algebras

We recall the definition of a strictly positive element of a C∗-algebra. A
positive element h ∈ A is strictly positive if φ(h) > 0 for every state φ of A.
A C∗-algebra has a strictly positive element if and only if it has a countable
approximate identity [Pedersen 1979, 3.12.5], so in particular every separable C∗-
algebra contains a strictly positive element. A C∗-algebra containing a strictly
positive element will be called a σ-unital C∗-algebra.

Proposition 12.3.1. Let A be a C∗-algebra, and h ∈ A+. Then h is strictly
positive if and only if hA is dense in A.

Proof. If hA is not dense in A, then by [Dixmier 1969, 2.9.4] there is a state φ
on A vanishing on hA. If uλ is an approximate identity for A, then φ(huλ) =0,
so φ(h) =0. Conversely, if φ(h) =0, then φ vanishes on hA by [Pedersen 1979,
3.1.3], so hA is not dense. �

12.4. Kasparov’s Technical Theorem

In this paragraph we prove a result about separation of orthogonal subalge-
bras of outer multiplier algebras, which will be needed for the development of
Kasparov theory.

We first need a slight extension of [Pedersen 1979, 3.12.14]. Recall that if A
is a C∗-subalgebra and ∆ a linear subspace of a C∗-algebra B, then ∆ derives A
if [a, d] = ad− da ∈ A for all a ∈ A, d ∈ ∆. If ∆ derives A, then an approximate
identity uλ for A is quasicentral for ∆ if limλ[uλ, d] =0 for all d ∈ ∆.
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Proposition 12.4.1. If ∆ derives A and vi is an approximate identity for A,
then there is an approximate identity for A, contained in the convex hull of vi,
which is quasicentral for ∆.

Proof. The proof is identical to the proof of [Pedersen 1979, 3.12.14] (with B

replaced by ∆) with the following modification in the proof that Miλ 6= ∅. Fix
x1, . . . , xn in ∆ and let C =

⊕n
k=1B. (B is the C∗-algebra containing A and

∆.) Working in B′′ we know that vj ↗ p, where p is the identity of A′′, regarded
as a subalgebra of B′′. We claim that p commutes with ∆. ∆ clearly derives A′′,
so if d ∈ ∆, [p, d] = p[p, d] = [p, d]p, and [p, d] = [p2, d] = p[p, d]+ [p, d]p = 2[p, d],
so [p, d] =0. Now proceed as in [Pedersen 1979, 3.12.14]. �

We now prove a result which has become known as Kasparov’s Technical Theo-
rem.

Theorem 12.4.2. Let J be a σ-unital C∗-algebra. Let A1 and A2 be σ-unital C∗-
subalgebras of M(J), and ∆ a separable subspace of M(J). Suppose A1 ·A2 ⊆ J ,
and that ∆ derives A1. Then there are M,N ∈ M(J) such that 0 ≤ M ≤ 1,
N = 1−M , M ·A1 ⊆ J , N ·A2 ⊆ J , and [M,∆] ⊆ J .

If one passes to the outer multiplier algebra, the result may be rephrased as
follows: if B1 and B2 are orthogonal σ-unital C∗-subalgebras of the outer multi-
plier algebra of J , and ∆ (separable) derives B1, then there is a positive element
M of Q(J), of norm 1, commuting with ∆, which is a unit for B2 and which is
orthogonal to B1.

If the subspace ∆ is eliminated, and A1 and A2 are separable, the result
follows almost trivially from [Pedersen 1979, 3.12.10], since the quotient map of
C∗(A1, A2) onto C∗(B1, B2) ∼= B1 ⊕ B2 extends to a map of M(C∗(A1, A2)) ⊆
M(A) onto M(C∗(B1, B2)) ∼= M(B1) ⊕ M(B2). (This observation is due to
Cuntz.)

The result can fail if A1 and A2 are not σ-unital, even if B1 and B2 are
commutative and ∆ = 0 [Choi and Christensen 1983].

So the difficulty all comes from the ∆. Kasparov’s proof is extremely compli-
cated; the elegant proof given here is due to N. Higson.

Proof of 12.4.2. We first reduce to the case where J and Ai are separable. Let
B1,1 be a separable C∗-subalgebra of A1 containing a strictly positive element h1

of A1, and let B1,n+1 = C∗(B1,n, [B1,n,∆]). Then B1 = [
⋃
B1,n] is a separable

C∗-subalgebra of A1, and ∆ derives B1. Let B2 be a separable C∗-subalgebra of
A2 containing a strictly positive element h2 of A2. Let B0,1 be the C∗-subalgebra
of J generated by a strictly positive element of J and B1 ·B2, and let B0,n+1 =
C∗(B0,n, B1 ·B0,n, B2 ·B0,n,∆ ·B0,n). Then if B = [

⋃
B0,n], by [Pedersen 1979,

3.12.12], M(B) can be identified with a subalgebra of M(J) containing B1, B2,
and ∆. If M is constructed for B, B1, B2, and ∆, then for x ∈ A1 we have
Mx = limnMh

1/n
1 x ∈ [B ·A1] ⊆ J , and similarly (1−M)A2 ⊆ J .
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So we may assume J , Ai are separable. Let Xi, Y , Z be compact sets of
vectors of norm ≤ 1 (e.g. sequences converging to 0) which are total in Ai, ∆,
and J respectively. By 12.4.1 there is an approximate identity (un) for A1 such
that

(a) for all n, ‖unx− x‖ < 2−n for all x ∈ X, and
(b) for all n, ‖[un, y]‖ < 2−n for all y ∈ Y .

There is also an approximate identity (vn) for J such that

(c) for all n, ‖vnw−w‖ < 2−2n for all w in the compact set {u1, . . . , un}·(Z∪X2)
of J , and

(d) for all n, ‖[vn, w]‖ is small enough that ‖[bn, w]‖ < 2−n for all w ∈ X1 ∪
X2 ∪ Y ∪ Z, where bn = (vn − vn−1)1/2.

It follows from property (c) that ‖bnunwbn‖ <
√

5 · 2−n. If z ∈ Z, then
‖bnunbnz‖ ≤ ‖bnunzbn‖ + ‖bnun‖ · ‖[bn, z]‖ < (

√
5 + 1)2−n. So the series∑

bnunbnz converges for all z. bnunbn ≤ b2n, so the partial sums of the se-
ries

∑
bnunbn are bounded by 1. By 12.1.2, the series converges strictly to an

element N ∈M(J) with 0 ≤ N ≤ 1. Set M = 1−N . To complete the proof, it
suffices to show that N ·X2 ⊆ J , (1 −N) ·X1 ⊆ J , and [N,Y ] ⊆ J . As above,
if x ∈ X2 we have ‖bnunbnx‖ < (

√
5 + 1)2−n, so the series Nx =

∑
bnunbnx is

norm-convergent, and the terms are in J ; so N ·A2 ⊆ J . Similarly, if x ∈ X1 we
have

‖(b2n − bnunbn)x‖ ≤ ‖bn(unx− x)bn‖+ ‖bn[bn, x]‖+ ‖bnun[bn, x]‖ < 3 · 2−n,

so
∑

(b2n − bnunbn)x converges;
∑
b2nx converges to x, so the previous sum is

(1−N)x. All of the terms are in J , so (1−N)A1 ⊆ J . Finally, if y ∈ Y , using
(b) and (d) we have

‖[bnunbn, y]‖ ≤ ‖bnun[bn, y]‖+ ‖bn[un, y]bn‖+ ‖[bn, y]unbn‖ < 3 · 2−n,

so [N, y] is a sum of a series in J . This completes the proof of Kasparov’s
Technical Theorem. �

12.5. EXERCISES AND PROBLEMS

12.5.1. Prove directly that K0(A) ∼= K1(Qs(A)) without using the K-theory
exact sequence or Bott periodicity, by constructing for each [p]− [q] ∈ K0(A) a
partial isometry v ∈ Ms(A) with v∗v = 1 − p, vv∗ = 1 − q. Do the unital case
first. Some of the arguments in [Kasparov 1980b, Theorem 6.3] will be helpful,
as well as ideas from Chapter II.

12.5.2. If B is a C∗-algebra, the projections in B can be identified with the
∗-homomorphisms from C into B. If C0(R) is identified with the continuous
functions on the unit circle which vanish at 1, and B is unital, there is a natural
identification of the unitaries of B with the ∗-homomorphisms from C0(R) into
B. If B = Qs(A), then for any C the set of unitary equivalence classes of
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∗-homomorphisms from C to B has an associative binary operation induced by
diagonal sum using M2(B) ∼= B. The trivial homomorphisms (ones which lift
to homomorphisms from C to Ms(A)) form a subsemigroup. (See Section 15.)
Show that if C = C the quotient semigroup is a group isomorphic to K0(B), and
that if C = C0(R) the quotient semigroup is a group isomorphic to K1(B).

13. Hilbert Modules

Although not absolutely necessary, it is most convenient to phrase the defi-
nitions and basic results of Kasparov theory in terms of Hilbert modules. The
notion of Hilbert module goes back to Paschke [Paschke 1973], following related
work of Kaplansky and Rieffel. We will use notation similar to that of [Kasparov
1980a]; we will work only with right modules.

13.1. Basic Definitions

Definition 13.1.1. Let B be a C∗-algebra. A pre-Hilbert module over B

is a right B-module E equipped with a B-valued “inner product”, a function
〈 · , · 〉 : E × E → B, with these properties:

(1) 〈 · , · 〉 is sesquilinear. (We make the convention that inner products are
conjugate-linear in the first variable.)

(2) 〈x, yb〉 = 〈x, y〉b for all x, y ∈ E, b ∈ B.
(3) 〈y, x〉 = 〈x, y〉∗ for all x, y ∈ E.
(4) 〈x, x〉 ≥ 0; if 〈x, x〉 = 0, then x = 0.

For x ∈ E, put ‖x‖ = ‖〈x, x〉‖1/2. This is a norm on E. If E is complete, E is
called a Hilbert module over B. The closure of the span of {〈x, y〉 : x, y ∈ E} is
called the support of E, denoted 〈E,E〉. E is full if 〈E,E〉 = B.

The completion of a pre-Hilbert module is a Hilbert module in the obvious way.

Examples 13.1.2. (a) B is itself a full Hilbert B-module with 〈a, b〉 = a∗b.
More generally, any (closed) right ideal of B is a Hilbert B-module.

(b) If Ei is a family of (pre-)Hilbert B-modules, the direct sum is a pre-Hilbert
module with inner product

〈⊕
xi,
⊕
yi
〉

=
∑
i〈xi, yi〉.

(c) As a special case of (b), let HB be the completion of the direct sum of a
countable number of copies of B, i.e. HB consists of all sequences (bn) such that∑
b∗nbn converges, with inner product 〈(an), (bn)〉 =

∑
n a
∗
nbn. HB is called the

Hilbert space over B. HB is sometimes denoted B∞; we can of course also form
Bn. More generally, if E is any Hilbert module, we can form En and E∞.

(d) A right B-rigged space in the sense of [Rieffel 1974] is a full pre-Hilbert
B-module. A Morita equivalence bimodule between A and B [Rieffel 1974] is
a pre-Hilbert B-module. Note that HB is the standard equivalence bimodule
between B ⊗K and B.
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Proposition 13.1.3 (Cauchy–Schwartz Inequality). For any x, y ∈ E,
we have ‖〈x, y〉‖ ≤ ‖x‖‖y‖.

Proof. We may assume y 6= 0. Set b = −〈y, x〉/‖〈y, y〉‖, and use the fact that
〈x+ yb, x+ yb〉 ≥ 0. �

13.2. Bounded Operators on Hilbert Modules

Definition 13.2.1. Let E be a Hilbert B-module. B(E) is the set of all module
homomorphisms T : E → E for which there is an adjoint module homomorphism
T ∗ : E → E with 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ E. BB = B(HB).

Actually, the assumption that T and T ∗ are module maps is unnecessary, since
maps with adjoints are automatically module homomorphisms: we have

〈T (xb), y〉 = 〈xb, T ∗y〉 = b∗〈x, T ∗y〉 = b∗〈Tx, y〉 = 〈(Tx)b, y〉

for all y, so T (xb) = (Tx)b. Even linearity is automatic for a map with an
adjoint.

Proposition 13.2.2. Each operator in B(E) is bounded , and B(E) is a C∗-
algebra with respect to the operator norm.

Proof. The existence of an adjoint implies that an operator in B(E) has closed
graph, hence is bounded. The completeness and the C∗-axioms are shown exactly
as in B(H), using 13.1.3. �

B(E) does not contain all bounded module-endomorphisms of E in general; see
[Paschke 1973, 2.5].

Note that a submodule of a Hilbert module, even of HB , need not be com-
plemented in general, i.e. there is not generally a projection in B(E) onto the
submodule. For example, a right ideal in B is rarely complemented.

There are some special “rank 1” operators on any Hilbert module: if x, y ∈ E,
let θx,y be the operator defined by θx,y(z) = x〈y, z〉. We have θx,y ∈ B(E); in
fact, θ∗x,y = θy,x. If T ∈ B(E), then Tθx,y = θTx,y; θx,yT = θx,T∗y, so the linear
span of {θx,y} is an ideal in B(E). These are the “finite-rank” operators on E.

Definition 13.2.3. K(E) is the closure of this linear span. It is a (closed) ideal
in B(E). KB = K(HB).

Examples 13.2.4. (a) K(B) ∼= B for any B; if B is unital, then also B(B) ∼= B.
(b) If E is a Hilbert module, then B(En) ∼= Mn ⊗ B(E); K(En) ∼= Mn ⊗K(E).

In particular, K(Bn) ∼= Mn(B), and if B is unital B(B) ∼= Mn(B).
(c) KB

∼= B ⊗K.
(d) If E is a (complete) A − B-equivalence bimodule, thought of as a Hilbert
B-module as in 13.1.2(d), then K(E) ∼= A.

Proofs of these facts are straightforward and are left to the reader.
One can also define B(E1, E2) and K(E1, E2) for a pair of Hilbert B-modules

E1, E2, in the same manner.
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13.3. Regular Operators

We will sometimes have occasion to consider unbounded operators on Hilbert
modules.

Definition 13.3.1. A regular operator on a Hilbert B-module E is a densely
defined operator T on E with densely defined adjoint T ∗, such that 1 +T ∗T has
dense range in E.

As before, a regular operator must be B-linear. The domain of a regular operator
is a B-module. Just as in B(H), if T is a regular operator, then (1 + T ∗T )−1

extends to a bounded operator (an element of B(E)). Also, T ∗ is a regular
operator, so we may define elements h and l in B(E) as the bounded extensions
of (1 + T ∗T )−1/2 and (1 + TT ∗)−1/2 respectively. A routine calculation then
shows the following.

Proposition 13.3.2. The operator Th extends to an operator F in B(E). F ∗

is the extension of T ∗l, and T = Fh−1, T ∗ = F ∗l−1.

13.4. Hilbert Modules and Multiplier Algebras

The next theorem gives the fundamental relationship between Hilbert modules
and multiplier algebras:

Theorem 13.4.1. Let E be a Hilbert B-module. Then the correspondence
T ∈ B(E) → (T1, T2) ∈ M(K(E)), where T1(θx,y) = θTx,y, T2(θx,y) = θx,T∗y,
defines an isomorphism of B(E) onto M(K(E)).

Proof. We have ‖Ti‖ ≤ ‖T‖, so Ti defines a bounded operator on K(E); and
it is easy to check that (T1, T2) is a double centralizer of K(E). If Ti =0, then
for any x T1(θx,Tx) = θTx,Tx = 0, so Tx = 0. So the map is injective. To show
surjectivity, if (T1, T2) ∈M(K(E)), define

T (x) = lim
ε→0

T1(θx,x)(x)[〈x, x〉+ ε]−1,

T ∗(x) = lim
ε→0

[T2(θx,x)]∗(x)[〈x, x〉+ ε]−1.

(The limits exist because T1(S)∗T1(S)≤‖T1‖2S∗S and T2(S)T2(S)∗≤‖T2‖2SS∗
for all S ∈ K(E).) Since for all x ∈ E we have x = limε→0 θx,x(x)[〈x, x〉+ ε]−1,
it follows that

〈x, T ∗(y)〉 = lim
ε→0
〈x, [T2(θy,y)]∗(y)[〈y, y〉+ ε]−1〉

= lim
ε→0
〈T2(θy,y)θx,x(x)[〈x, x〉+ ε]−1, y[〈y, y〉+ ε]−1〉

= lim
ε→0
〈θy,yT1(θx,x)(x)[〈x, x〉+ ε]−1, y[〈y, y〉+ ε]−1〉

= lim
ε→0
〈T1(θx,x)(x)[〈x, x〉+ ε]−1, θy,y(y)[〈y, y〉+ ε]−1〉 = 〈T (x), y〉.

Finally, fix x and y; for z ∈ E set w = T1(θx,y)(z) − θTx,y(z). Then for any u

and v we have θu,v(w) = 0, so w = 0. This is true for all z, so T1(θx,y) = θTx,y.
Similarly T2(θx,y) = θT∗x,y. �
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Corollary 13.4.2. B(B) = M(B), B(Bn) ∼= Mn(M(B)), and B(HB) ∼=
Ms(B).

13.5. Tensor Products of Hilbert Modules

If E1 and E2 are Hilbert modules over B1 and B2, respectively, and φ : B1 →
B(E2) is a ∗-homomorphism, then we can form the tensor product E1 ⊗φ E2

as follows. Regard E2 as a left B1-module via φ, and form the algebraic tensor
product E1�B1E2; this is a right B2-module. Define a B2-valued pre-inner prod-
uct on this algebraic tensor product by 〈x1⊗x2, y1⊗y2〉 = 〈x2, φ(〈x1, y1〉1)y2〉2,
where 〈 · , ·〉i is the Bi-valued inner product on Ei.

Definition 13.5.1. The completion of the algebraic tensor product with respect
to this inner product (with vectors of length 0 divided out) is called the tensor
product of E1 and E2, denoted E1 ⊗φ E2.

This tensor product is sometimes denoted E1 ⊗B1 E2, but we prefer the more
precise notation explicitly specifying the map φ.

There is a natural homomorphism from B(E1) to B(E1 ⊗φ E2), which is
injective if φ is; we will write F ⊗ 1 for the image of F . However there is no
homomorphism from B(E2) to B(E1⊗E2) in general, i.e. there is no reasonable
definition of 1⊗ F in general. (If F ∈ B(E2) commutes with φ(B1), then there
is a well-defined operator 1⊗ F .)

A related construction is the “outer (or external) tensor product”: if E1 and
E2 are Hilbert modules over B1 and B2, the algebraic tensor product E1�E2 is
a module over B1�B2 in the obvious way, and its completion with respect to the
inner product 〈x1⊗x2, y1⊗y2〉 = 〈x1, y1〉⊗〈x2, y2〉 makes E1⊗E2 into a Hilbert
(B1 ⊗ B2)-module. There is an embedding of B(E1) ⊗ B(E2) into B(E1 ⊗ E2)
in the obvious way; the restriction to K(E1) ⊗ K(E2) is an isomorphism onto
K(E1 ⊗ E2).

Examples 13.5.2. (a) If φ : B1 → B2 is a ∗-homomorphism, then B1 ⊗φ B2

is isomorphic to the closed right ideal φ(B1)B2 of B2 generated by φ(B1). So
if φ is a unital homomorphism of unital C∗-algebras, or more generally if φ is
essential in the sense that φ(B1) contains an approximate identity for B2, then
B1 ⊗φ B2 may be identified with B2.

(b) If φ : C → M(B) maps C to the scalars, then H ⊗φ B ∼= HB . We will
sometimes write H ⊗C B for this tensor product.

(c) If φ : B1 → B2 is essential, we may identify HB1 ⊗φB2 with H⊗C B2
∼= HB2

in an evident way.

13.6. The Stabilization or Absorption Theorem

Before proving the absorption theorem for Hilbert modules, we need a fact
about strictly positive elements in K(E):
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Proposition 13.6.1. Let E be a Hilbert B-module and T ∈ K(E)+. Then T is
strictly positive if and only if T has dense range.

Proof. If T is strictly positive then TK(E) = K(E). Since K(E)E = E, we
have TE = TK(E)E = K(E)E = E. If T has dense range, for any x, y ∈ E

choose a sequence zn with Tzn → x. Then θx,y = limn Tθzn,y ∈ TK(E). So
TK(E) is dense and T is strictly positive. �

The next theorem, called the Stabilization or Absorption Theorem, is the most
important technical result of this section. The theorem in this form is due to
Kasparov [Kasparov 1980a]; but it is very similar to a theorem of Brown, Green,
and Rieffel on Morita equivalence and stable isomorphism (13.7.1). The proof
given here is due to Mingo and Phillips [Mingo and Phillips 1984].

Theorem 13.6.2. If E is a countably generated Hilbert B-module, then E ⊕
HB
∼= HB .

Proof. It suffices to prove that Ẽ ⊕ HB
∼= HB , where Ẽ is E regarded as a

Hilbert B̃-module, since EB = E and HBB = HB . Thus we may assume B is
unital.

Let {ηj} be a bounded sequence of generators for E, with each generator
repeated infinitely often. Let {ξj} be the “standard” orthonormal basis for HB ,
i.e. ξj has a 1 in the j-th place and zeros elsewhere.

Define T : HB → E ⊕HB by T (ξj) = 2−jηj ⊕ 4−jξj . Then
T =

∑
2−jθ(ηj+2−jξj),ξj ∈ K(HB , E ⊕HB).

T is clearly one-to-one. Since each ηj is repeated infinitely often, ηj⊕2−kξk ∈
THB for infinitely many k; thus ηj ⊕ 0 and hence also 0 ⊕ ξj are in THB , i.e.
T has dense range. We also have T ∗T = S∗S + R∗R, where S(ξj) = 0⊕ 4−jξj ,
R(ξj) = 2−jηj ⊕ 0. So T ∗T ≥ S∗S = diag(4−2, 4−4, 4−6, . . .); S∗S has dense
range and is therefore strictly positive, so T ∗T is strictly positive and thus has
dense range. So T has a polar decomposition T = U(T ∗T )1/2, where U is a
unitary in B(HB , E ⊕ HB). [U is defined by U((T ∗T )1/2ξ) = Tξ; U∗(Tξ) =
(T ∗T )1/2ξ.] U implements an isomorphism between HB and E ⊕HB . �

Corollary 13.6.3. If E is a Hilbert B-module, then E is countably generated
if and only if K(E) has a strictly positive element .

Proof. As in the proof of 13.6.2 we may assume B is unital. Then by 13.6.2
there is a projection P ∈ B(HB) with E ∼= PHB . Let (xn) be the standard
orthonormal basis for HB . Then T =

∑
2−nθxn,xn is strictly positive by 13.6.1.

K(E) ∼= PK(HB)P , and PTP is strictly positive in PK(HB)P . Conversely, if
K(E) has a strictly positive element T , then T can be written as a convergent
series T =

∑
θxn,yn . Since K(E)E is dense in E, (xn) is a set of generators for

E. �

There is also an equivariant version of the Absorption Theorem (20.1.4).
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13.7. EXERCISES AND PROBLEMS

13.7.1. (a) Use the stabilization theorem to prove that if B is σ-unital and E

is a countably generated full Hilbert B-module, then E∞ ∼= HB [Mingo and
Phillips 1984, 1.9].

(b) Show that if A and B are C∗-algebras and there is a full Hilbert B-module
E with K(E) ∼= A, there is a full Hilbert A-module E′ with K(E′) ∼= B. [Regard
K(B,E) as a right K(E)-module, and define 〈x, y〉 = x∗y.] If there is such a
module, A and B are said to be (strongly) Morita equivalent [Rieffel 1974]. If
A is a full hereditary C∗-subalgebra of B, then the submodule AB of B gives a
strong Morita equivalence between A and B.

(c) Show that if A and B are σ-unital C∗-algebras which are strongly Morita
equivalent, then A and B are stably isomorphic, i.e. A ⊗ K ∼= B ⊗ K [Brown
et al. 1977b] (cf. [Brown 1977]). [If K(E) ∼= A, then K(E∞) ∼= A⊗K.]

13.7.2. Prove the Generalized Stinespring Theorem [Kasparov 1980a, Theo-
rem 3] on dilations of completely positive maps:

Theorem. Let A and B be C∗-algebras, with A separable and B σ-unital . Let
φ : A → Ms(B) be a completely positive contraction. Then there is a ∗-homo-
morphism ρ : A→M2(Ms(B)) such that

diag(1, 0)ρ(a) diag(1, 0) = diag(φ(a), 0) for all a ∈ A.

(a) Extend φ to a unital completely positive map from A+ to Ms(B) by [Choi
and Effros 1976, 3.9]. Thus we may assume A is unital and φ(1) = 1.

(b) Define a pre-inner product on the right B-module A�HB by

〈a1 ⊗ x1, a2 ⊗ x2〉 = 〈x1, φ(a∗1a2)x2〉HB
Show that the completion of this module (with vectors of length zero divided
out) is a countably generated Hilbert B-module E. There is a ∗-homomorphism
ω : A→ B(E) induced by the left action of A on A�HB .

(c) Define maps S : HB → A � HB and T : A � HB → HB by S(x) = 1 ⊗ x,
T (a⊗ y) = φ(a)y. Show that for

〈S(x), a⊗ y〉 = 〈x, T (a⊗ y)〉 for x, y ∈ HB and a ∈ A.

Since S is bounded, conclude that S and T extend to maps W ∈ B(HB , E) and
W ∗ ∈ B(E,HB) which are adjoints of each other. W ∗ω(a)W = φ(a) for a ∈ A.

(d) W ∗W = 1, so WW ∗ is a projection; (WW ∗)E ∼= HB . Under the chain of
isomorphisms

E ⊕HB
∼= [(WW ∗)E ⊕ (1−WW ∗)E]⊕HB

∼= HB ⊕ [(1−WW ∗)E ⊕HB ] ∼= HB ⊕HB

(the last of which uses the Stabilization Theorem), W ⊕ 0 becomes diag(1, 0) ∈
M2(Ms(B)) ∼= B(HB ⊕ HB), and ω ⊕ 0 becomes a homomorphism ρ : A →
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M2(Ms(B)). (If a unital ρ is desired, let ρ correspond to ω ⊕ σ, where σ : A→
B(HB) is any unital homomorphism.)

14. Graded C∗-algebras

Kasparov’s development of operator K-theory uses graded C∗-algebras. One
of the things which makes [Kasparov 1980b] difficult to read is the great gen-
erality; he presents a theory which works equally well for complex, real, and
“real” C∗-algebras, allowing a grading and a compact group action. The reader
who is only interested in the special case of ordinary (trivially graded) complex
C∗-algebras with no group action sometimes feels that the (often slight) techni-
calities necessary in the general case are an obstacle to understanding the case
of interest.

When I first began to study [Kasparov 1980b], I decided to try to ignore the
real and “real” cases, the group action, and the grading. I gradually came to
appreciate the usefulness of considering graded C∗-algebras; some parts of the
theory become much simpler and more natural when grading is included. For
example, Bott Periodicity becomes a special case of the Takai Duality Theorem
for Z2. Graded C∗-algebras also arise naturally in mathematical physics (“su-
persymmetry”). And graded C∗-algebras are really not such mysterious objects
after all. Besides, if one is only interested in ordinary (ungraded) C∗-algebras,
one only needs to consider two very simple special types of graded C∗-algebras.

In this section, we develop the general theory of graded C∗-algebras needed
for KK-theory, and the important special cases for the KK-theory of ordinary
C∗-algebras.

14.1. Basic Definitions

Definition 14.1.1. Let A be a C∗-algebra. A (Z2-)grading on A is a decom-
position of A into a direct sum of two self-adjoint closed linear subspaces A(0)

and A(1), such that if x ∈ A(m), y ∈ A(n), then xy ∈ A(m+n) (addition mod 2).
An element of A(n) is said to be homogeneous of degree n. The degree of a ho-
mogeneous element a is denoted ∂a. If there is a self-adjoint unitary g ∈ M(A)
with A(n) = {a ∈ A : g∗ag = (−1)na}, then the grading is called even and g is
called a grading operator for the grading. If A(1) = 0, the grading is trivial. A
trivial grading is even with grading operator 1. A homomorphism φ : A → B

of graded C∗-algebras is a graded homomorphism if φ(A(n)) ⊆ B(n) for n = 0,
1. A C∗-subalgebra B of a graded C∗-algebra A is a graded C∗-subalgebra if
B = (B ∩ A(0)) + (B ∩ A(1)), i.e. if a(0) + a(1) ∈ B implies a(0), a(1) ∈ B. In
this case, the grading on A restricts to a grading on B. A state on A is homo-
geneous if it vanishes on A(1). Any state φ defines a homogeneous state φh by
φh(a(0) + a(1)) = φ(a(0)). If A is a graded C∗-algebra, the graded commutator of
homogeneous elements a, b is [a, b] = ab− (−1)∂a·∂bba. The graded commutator
of general elements is then defined by linearity.



14. Graded C∗-algebras 115

If A is graded, then A(0) is a C∗-subalgebra of A (A(1) is of course not a sub-
algebra). Any C∗-algebra may be regarded as a trivially graded C∗-algebra. A
grading on A extends uniquely to a grading on Ã.

A grading on A is nothing but a Z2-action on A : A(0) and A(1) are the
eigenspaces for 1 and −1 respectively. That is, given an automorphism α of
period 2, A(0) ={a : α(a) = a}, A(1) ={a : α(a) = −a}. If a ∈ A, the decompo-
sition is a = a(0) + a(1), where a(0) = (a + α(a))/2, a(1) = (a − α(a))/2. Con-
versely, given a grading, the corresponding Z2-action is given by α(a(0) +a(1)) =
a(0)− a(1). A grading is even if and only if the corresponding Z2-action is inner.

A C∗-subalgebra of A is a graded subalgebra if and only if it is (globally)
invariant under the grading automorphism.

Examples 14.1.2. (a) If A is any (ungraded) C∗-algebra, there is a grading on
M2(A) with M2(A)(0) the diagonal matrices and M2(A)(1) the matrices with zero
diagonal. This is an even grading with grading operator diag(1,−1), called the
standard even grading on M2(A). By identifying A⊗K with M2(A⊗K), we ob-
tain the standard even grading of A⊗K (this grading is actually only determined
up to conjugation by an inner automorphism homotopic to the identity).

(b) There is a standard odd grading on A ⊕ A for any (ungraded) A: (A ⊕
A)(0) ={(a, a) : a ∈ A} and (A⊕A)(1) ={(a,−a) : a ∈ A}. If A = C, we denote
C2 with the standard odd grading by C1. (C1 is a complex Clifford algebra
[Kasparov 1980b, § 2].) Note that C1 is isomorphic to the group C∗-algebra of
Z2; the grading is given by the dual action of Ẑ2

∼= Z2.

(c) A grading on a C∗-algebra A induces a canonical grading on M(A) in the
obvious way. Thus, for any ungraded A, there is a standard even grading on
Ms(A) (determined up to inner automorphism homotopic to the identity).

The reader interested just in Kasparov theory for ordinary (ungraded) C∗-
algebras need only be concerned with these examples.

Care must be exercised in applying identities with graded commutators. For
example, it is not true in general that [x, y] = −[y, x]: if x has degree 1 then
[x, x] = 2x2. The next proposition gives some standard identities valid for graded
commutators. The proof is a straightforward calculation checking case-by-case.

Proposition 14.1.3. Let A be a graded C∗-algebra, and x, y, z homogeneous
elements of A. Then:

(a) [x, y] + (−1)∂x·∂y[y, x] = 0.

(b) [x, yz] = [x, y]z + (−1)∂x·∂yy[x, z].

(c) (−1)∂x·∂z[[x, y], z] + (−1)∂x·∂y[[y, z], x] + (−1)∂y·∂z[[z, x], y] = 0.

If x is self-adjoint and has degree 1, then [x, x] ≥ 0. If y is also self-adjoint and
degree 1, then [x, y] is self-adjoint; the condition that [x, y] ≥ 0 means that y
“lines up with” x in an appropriate sense.
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14.2. Graded Hilbert Modules

If B is a graded C∗-algebra, a graded Hilbert B-module is a Hilbert B-
module E with a decomposition as a direct sum of subspaces E(0) and E(1)

with E(m)B(n) ⊆ E(m+n) and 〈E(m), E(n)〉 ⊆ B(m+n). The elements of B(0)

leave invariant the subspaces E(0) and E(1), and the elements of B(1) inter-
change them. There is a natural grading on HB , with H(n)

B the set of sequences
with all terms in B(n). A grading on E induces a grading on B(E) and K(E).
More generally, one obtains a grading on the set of regular operators on E.

If E = B, the grading on B(B) ∼= M(B) obtained in this way agrees with the
grading defined in 14.1.2(c).

If E is a graded Hilbert B-module, we denote by Eop the graded Hilbert B-
module obtained from E by interchanging E(0) and E(1). The grading on B(E)
induced by Eop is the same as the grading induced by E.

We write ĤB for HB⊕Hop
B , where HB has its natural grading. ĤB is isomor-

phic to HB as a Hilbert B-module, but not in general as a graded Hilbert B-
module. ĤB is in some sense the “universal” graded Hilbert B-module (14.6.1).

If HB is trivially graded, then we say ĤB has standard even grading. The
standard even grading on ĤB induces a standard even grading on B(ĤB) ∼=
Ms(B). More generally, if E is trivially graded, then E⊕Eop induces a standard
even grading on M2(B(E)).

14.3. Graded Homomorphisms

If A and B are graded C∗-algebras and M2(B) has the standard even grading,
a graded homomorphism from A to M2(B) has the form

φ =
[
φ11 φ12

φ21 φ22

]
,

where φ11, φ22 vanish on A(1), φ12, φ21 vanish on A(0). So if A is trivially graded,
φ = diag(φ11, φ22).

If B⊕B has the standard odd grading, then a graded homomorphism from A

to B⊕B is of the form φ = φ1⊕φ2, where φ2(a(0) +a(1)) = φ1(a(0)−a(1)). If A is
evenly graded with grading operator g, then conjugating the second coordinate
by φ2(g) yields that φ is conjugate to φ1 ⊕ φ1, so φ may be identified with an
(ordinary) homomorphism into B.

14.4. Graded Tensor Products

We must also introduce the notion of the graded (or skew-symmetric) tensor
product of two graded C∗-algebras. The general construction takes a bit of work,
but in the special cases of 14.1.2 the graded tensor product has a simple form.

Let A and B be graded C∗-algebras, and A�B the algebraic tensor product.
We define a new product and involution on A�B by

(a1 ⊗̂ b1)(a2 ⊗̂ b2) = (−1)∂b1·∂a2(a1a2 ⊗̂ b1b2),

(a ⊗̂ b)∗ = (−1)∂a·∂b(a∗⊗̂b∗)
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for homogeneous elementary tensors. The algebraic tensor product with this
multiplication and involution is a ∗-algebra, denoted A �̂B.

Definition 14.4.1. A ⊗̂max B is the universal enveloping C∗-algebra of A �̂B.

The representations of A ⊗̂maxB are in natural one-one correspondence with the
pairs (π, ρ) of representations of A and B on the same Hilbert space, with the
property that for homogeneous a and b π(a)ρ(b) = (−1)∂a·∂bρ(b)π(a).

To show that there are sufficiently many such representations, note that if φ
and ψ are homogeneous states on A and B respectively, then φ ⊗̂ ψ (defined in
the usual way) is a state on A �̂ B, and the GNS representation from φ ⊗̂ ψ
gives a C∗-seminorm on A �̂B. The supremum of all such seminorms is a norm
(proved just as for ordinary tensor products [Sakai 1971, 1.22.2]); the completion
is called the (minimal) graded tensor product of A and B, denoted A ⊗̂min B or
usually just A ⊗̂B. It is a quotient of A ⊗̂max B in general.

If A or B is nuclear, then using ideas from [Effros and Lance 1977] it is
not difficult to show that the quotient map from A ⊗̂max B to A ⊗̂min B is an
isomorphism. This is the case we will be almost exclusively concerned with.

The grading on A ⊗̂ B is the obvious one: homogeneous elementary tensors
are homogeneous elements, with ∂(a ⊗̂ b) = ∂a+∂b. The homogeneous elements
of degree n are then limits of linear combinations of homogeneous elementary
tensors of degree n. (Alternately, if α and β are the grading automorphisms on
A and B, then α ⊗̂ β is the grading automorphism on A ⊗̂B.)

It is straightforward to prove that A⊗̂(B⊗̂C) ∼= (A⊗̂B)⊗̂C. The isomorphism
A ⊗̂B ∼= B ⊗̂A is less obvious: a ⊗̂ b→ (−1)∂a·∂bb ⊗̂a does the trick. Analogous
statements are true for ⊗̂max.

14.4.2. We must also define the graded tensor product of Hilbert modules. If E1

and E2 are graded Hilbert modules over A and B respectively, and φ is a graded
∗-homomorphism from A to B, we define E1 ⊗̂φ E2 to be the ordinary tensor
product (13.5) with grading ∂(x ⊗̂ y) = ∂x + ∂y. The natural homomorphism
from B(E1) to B(E1 ⊗̂φ E2) is a graded homomorphism.

There is no natural embedding of B(E2) into B(E1 ⊗̂φ E2). Even if A = C
and φ is unital, the embedding of B(E2) sending F to 1 ⊗ F does not have
good properties with respect to the grading. We will never consider such an
embedding.

Examples 14.4.3. (a) If φ : A→ B is an essential graded homomorphism, then
A ⊗̂φB ∼= B, HA ⊗̂φB ∼= HB , and ĤA ⊗̂φB ∼= ĤB as graded Hilbert B-modules.

(b) If E1 is a Hilbert A-module and E2 is a Hilbert B-module, and if φ : A →
B(E2) is a graded homomorphism, then Eop1 ⊗̂φE2

∼= E1 ⊗̂φEop2
∼= (E1 ⊗̂φE2)op

and Eop1 ⊗̂φ E
op
2
∼= E1 ⊗̂φ E2 as graded Hilbert B-modules.

14.4.4. Although the recipe for the inner tensor product is exactly the same in
the graded case as for ungraded algebras, the formula for the graded outer tensor



118 VI. MORE PRELIMINARIES

product must be modified similarly to the way the graded tensor product of
algebras is defined. If E1 and E2 are graded Hilbert modules over the graded C∗-
algebras B1 and B2, respectively, we make the algebraic tensor product E1 �̂E2

into a right (B1 �̂B2)-module by (x1 ⊗̂ x2)(b1 ⊗̂ b2) = (−1)∂x2·∂b1(x1b1 ⊗̂ x2b2).
The inner product is given by the formula

〈x1 ⊗̂ x2, y1 ⊗̂ y2〉 = (−1)∂x2(∂x1+∂y1)〈x1, y1〉 ⊗̂ 〈x2, y2〉.

The grading is given by ∂(x1 ⊗̂ x2) = ∂x1 + ∂x2 as before. The embedding of
B(E1) ⊗̂ B(E2) into B(E1 ⊗̂ E2) is given by

(F1 ⊗̂ F2)(x1 ⊗̂ x2) = (−1)∂F2·∂x1F1(x1) ⊗̂ F2(x2).

This embedding gives an isomorphism between K(E1) ⊗̂K(E2) and K(E1 ⊗̂E2).

Example 14.4.5. ĤB may be regarded as the internal tensor product (H ⊕
Hop) ⊗̂C B or the external tensor product Ĥ ⊗̂ B. If the tensor product is
internal, the natural isomorphism is the obvious one. However, if the tensor
product is external, the natural isomorphism sends (ξ ⊗̂ b, η ⊗̂ b) to (ξ,−η) ⊗̂ b.
The embedding of B(B) into B(ĤB), regarded as an external tensor product in
this way, sends b ∈ B(B)(n) to diag(1, (−1)n) ⊗̂ b ∈ B((H ⊕Hop) ⊗̂C B). This is
the only embedding which relates well to the natural embedding of B(Ĥ).

The formulas for these graded tensor products appear daunting at first sight,
but we will actually rarely need to make use of them. The next paragraph will
clarify the structure of the graded tensor products we will need.

14.5. Structure of Graded Tensor Products

The next few results explain the structure of the graded tensor product in the
special cases given in 14.1.2. For KK-theory of ordinary C∗-algebras, these are
the only cases which must be considered.

Proposition 14.5.1. If A is evenly graded , then A ⊗̂B ∼= A⊗B (and similarly
A⊗̂maxB ∼= A⊗maxB). If A and B are both evenly graded with grading operators
g and h respectively , then under this isomorphism A ⊗ B is evenly graded with
grading operator g ⊗ h.

Proof. The isomorphism sends a ⊗̂ b to ag∂b⊗ b. It is straightforward to check
that this is an isomorphism of A �̂ B onto A � B, and that it preserves tensor
products of homogeneous states. It is also easy to check in the second case that
conjugation of elementary tensors by g ⊗ h has the right effect. �

Corollary 14.5.2. If A is evenly graded and M2 has the standard even grading ,
then A ⊗̂M2

∼= M2(A) with standard even grading . So if A is evenly graded and
K has a standard even grading , then A ⊗̂ K ∼= A ⊗ K with a standard even
grading .
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Proof. Let g be a grading operator for A. Then A ⊗̂ M2
∼= M2(A) with

grading operator diag(g,−g). The unitary 1
2

[
1+g
1−g

1−g
1+g

]
conjugates diag(g,−g)

to diag(1,−1), the grading operator for a standard even grading on M2(A). �

Kasparov theory really only uses graded C∗-algebras of the form A⊗̂K, where K
has the standard even grading. 14.5.2 shows that for the purposes of KK-theory
evenly graded C∗-algebras behave exactly like trivially graded ones.

Corollary 14.5.3. If A is evenly graded , then A ⊗̂ C1
∼= A ⊕ A with the

standard odd grading (14.1.2(b)).

Proof. Under the isomorphism A ⊗̂ C1
∼= A⊕A, the grading becomes

(A⊕A)(0) = {(a(0)+a(1), a(0)−a(1)) | a(n) ∈ A(n)},

(A⊕A)(1) = {(a(0)+a(1), −a(0)+a(1)) | a(n) ∈ A(n)}.

If α is the grading automorphism of A, then the automorphism 1⊕ α of A⊕ A
converts this grading into the standard odd grading. �

Proposition 14.5.4. Let A be a graded C∗-algebra, with corresponding Z2-
action α. Then A ⊗̂C1

∼= A×α Z2. The grading on A ⊗̂C1 corresponds to α · α̂,
where α̂ is the dual action on the crossed product .

Proof. The representations of A ⊗̂ C1 are in one-one correspondence with
the twisted covariant pairs (π, ρ) as in 14.4. C1 is generated by the self-adjoint
unitary ε = (1,−1), which is the nontrivial element of Z2 in C∗(Z2). For any pair
(π, ρ) we must have ρ(ε)π(a) = π(α(a))ρ(ε), exactly the covariance condition for
a representation of A×α Z2. �

Since α is inner on A ×α Z2 = A ⊗ C1, the crossed products by α̂ and by α · α̂
are isomorphic. So we obtain

Corollary 14.5.5. C1 ⊗̂ C1
∼= M2 with its standard even grading (14.1.2(a)).

This is really the Takai Duality Theorem for Z2. The general form of Takai
Duality for Z2 comes from taking the graded tensor product of both sides of the
equation in 14.5.5 with a general graded C∗-algebra A and using associativity of
graded tensor products.

14.5.6. In view of 14.5.5, we may define Cn as follows: if n = 2m is even, set
Cn = M2m with standard even grading, and if n = 2m+1, then Cn = M2m⊕M2m

with standard odd grading. Then Cp⊗̂Cq
∼= Cp+q for all p, q. (Cn is the complex

Clifford algebra associated with an n-dimensional complex vector space.)

14.6. Miscellaneous Theorems

Finally, there are graded analogs of the Stabilization Theorem (13.6.2) and of
Kasparov’s Technical Theorem (12.4.2):
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Theorem 14.6.1 (Stabilization Theorem). Let B be a graded C∗-algebra
and E a countably generated graded Hilbert B-module. Give ĤB its natural
grading (14.2). Then E ⊕ ĤB

∼= ĤB as graded Hilbert B-modules.

The proof is a simple modification of the proof of 13.6.2: let ηj = η
(0)
j + η

(1)
j ,

and let ξ(0)
j be the “standard” orthonormal basis for HB , ξ(1)

j the corresponding

“standard” basis for Hop
B . Set T (ξ(n)

j ) = 2−jη(n)
j ⊕ 4−jξ(n)

j . Note that T is of
degree 0.

Theorem 14.6.2 (Kasparov’s Technical Theorem). Let J be a σ-unital
graded C∗-algebra. Let A1 and A2 be σ-unital graded C∗-subalgebras of M(J)
(with the induced grading from J), and ∆ a separable graded linear subspace of
M(J). Suppose A1 ·A2 ⊆ J and that ∆ derives A1 (in the graded sense, i .e. using
the graded commutator). Then there are M,N ∈M(J)(0) such that 0 ≤M ≤ 1,
N = 1−M , M ·A1 ⊆ J , N ·A2 ⊆ J , and [M,∆] ⊆ J .

For the proof, note that a σ-unital graded C∗-algebra always contains a homo-
geneous strictly positive element of degree 0. For if h is strictly positive and
α is the grading automorphism, then h + α(h) is strictly positive of degree 0.
In the proof one should always use strictly positive elements and approximate
identities of degree 0. Note that a graded commutator is just an ordinary com-
mutator when one of the components is homogeneous of degree 0. With these
observations, the proof is identical to the proof of 12.4.2.

14.7. EXERCISES AND PROBLEMS

14.7.1. Let B be a graded C∗-algebra. Let ĤB be as in (14.2). Then K(ĤB) ∼=
B ⊗̂K as graded C∗-algebras, where K has a standard even grading.

14.7.2. Formulate and prove graded analogs of the Brown–Green–Rieffel Theo-
rem (13.7.1) and the Generalized Stinespring Theorem (13.7.2).
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CHAPTER VII

THEORY OF EXTENSIONS

In this chapter, we will develop the Brown–Douglas–Fillmore (BDF) theory of
extensions, and the generalization due to Kasparov.

Extension theory is important in many contexts, since it describes how more
complicated C∗-algebras can be constructed out of simpler “building blocks”.
Some of the most important applications of extension theory are:

(1) Structure of type I C∗-algebras, group C∗-algebras, and crossed products.
(2) Classification of essentially normal operators.
(3) Index theory for elliptic pseudodifferential operators.
(4) Using associated homological invariants to distinguish between C∗-algebras

(often simple C∗-algebras).

These applications will be discussed in more detail later.
We will not follow the historical development of the theory very closely; in

fact, much of what we do will be in reverse historical order. We have chosen to
do things this way since much of the general theory discussed in Section 15 must
be done in essentially the same way anyway for BDF theory, and it is no more
difficult to do things in full generality.

We will not go into all the ramifications of BDF theory; the interested reader
may consult [Douglas 1980] for a more complete treatment. [Rosenberg 1982a] is
also recommended as a good overall source, including Kasparov’s theory. Other
references include [Brown 1976; Baum and Douglas 1982b; Valette 1982].

15. Basic Theory of Extensions

In this section, we will develop the basics of extension theory. Our treatment
will (approximately) follow Kasparov, although many of the basic ideas come
directly from the work of Busby and Brown–Douglas–Fillmore.

15.1. Basic Definitions

Definition 15.1.1. Let A and B be C∗-algebras. An extension of A by B is a
short exact sequence

0 −→ B
j−→ E

q−→ A −→ 0

of C∗-algebras.

121
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There is some nonuniformity of terminology concerning extensions: sometimes
such a sequence is called an extension of B by A. We have adopted what seems
to have become the dominant terminology, especially since it matches up nicely
with the notation of Kasparov theory.

The goal of extension theory is, given A and B, to classify all extensions of A
by B up to a suitable notion of equivalence.

Example 15.1.2. We examine a very simple example to get an idea of what
is involved. Let A = C, B = C0((0, 1)). There are four possible choices of
E : C0((0, 1)) ⊕ C, C0((0, 1]), C0([0, 1)), and C(S1). Each has an obvious as-
sociated exact sequence. It is not clear at this point whether we should regard
the extensions corresponding to C0((0, 1]) and C0([0, 1)) as being the “same” or
“different”.

15.2. The Busby Invariant

The key to analyzing extensions is the so-called Busby invariant. Busby [1968]
was the first to study extensions of C∗-algebras; his work did not attract the
attention it deserved until the development of BDF theory several years later.
The Busby invariant is based on an earlier, purely algebraic construction of
Hochschild.

Given an extension 0 → B → E → A → 0, B sits as an ideal of E. Hence
there is a ∗-homomorphism σ from E into M(B) [Pedersen 1979, 3.12.8]. σ is
injective if and only if B is essential in E. If we compose σ with the quotient
map π : M(B) → Q(B), we obtain a ∗-homomorphism τ from E/B ∼= A to
Q(B).

Definition 15.2.1. τ is the Busby invariant of the extension 0 → B → E →
A→ 0.

τ is injective if and only if B is essential in A.

Example 15.2.2. In the situation of 15.1.2, M(B) ∼= C(βR), and Q(B) ∼=
C(βR \R). βR \R has two components. The Busby invariant corresponding to
the four extensions is the map from C to Q(B) sending 1 to 0, the characteristic
function of the component at +∞, the characteristic function of the component
at −∞, and 1 respectively.

We will see in the next paragraph that an extension can be recovered from its
Busby invariant. We will often identify an extension with its Busby invariant,
so we will frequently think of an extension as a ∗-homomorphism into an outer
multiplier algebra instead of as an exact sequence.

15.3. Pullbacks

We now discuss a general construction which will be of use in this chapter
and also in several places in Kasparov theory.
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Suppose A1, A2, B are C∗-algebras, and φi is a ∗-homomorphism from Ai to
B. We seek a C∗-algebra P and ∗-homomorphisms ψi from P to Ai making the
following diagram commutative:

P
ψ2 - A2

A1

ψ1
? φ1 - B

?
φ2

and which is universal in the sense that if C is any C∗-algebra and ωi : C → Ai
satisfies φ1 ◦ω1 = φ2 ◦ω2, then there is a ∗-homomorphism θ : C → P such that
ωi = ψi ◦ θ.

Any such P is obviously unique up to isomorphism commuting with the ψi.
One way of constructing P is as {(a1, a2) | φ1(a1) = φ2(a2)} ⊆ A1 ⊕A2.

Definition 15.3.1. P is called the pullback of (A1, A2) along (φ1, φ2).

Examples 15.3.2. (a) Let 0 → B → E → A → 0 be a short exact sequence
of C∗-algebras. Form the Busby invariant τ : A → Q(B). Then E is naturally
isomorphic to the pullback of (A,M(B)) along (τ, π).
(b) Let φ : A → B be a ∗-homomorphism. Let π0 : C0([0, 1), B) → B be
evaluation at 0. Then the pullback of (A,C0([0, 1), B)) along (φ, π0) is called the
mapping cone of φ, denoted Cφ.

15.3.2(a) shows how an extension can be recovered from its Busby invariant.
Mapping cones will be important in deriving exact sequences in KK-theory;

general pullbacks will be considered again in the Mayer–Vietoris sequence in
Section 21.

15.4. Equivalence

If we want to have a reasonable classification of the extensions of A by B,
we need a suitable notion of equivalence. There are several obvious candidates.
Throughout, we fix A and B, and consider two extensions

0 −→ B
j1−→ E1

q1−→ A −→ 0

and
0 −→ B

j2−→ E2
q2−→ A −→ 0

with associated Busby invariants τ1 and τ2.

(1) Strong isomorphism (called “strong equivalence” in [Busby 1968] and [Rosen-
berg 1982a]): there is a ∗-isomorphism γ making the following diagram com-
mute:

0 - B
j1 - E1

q1 - A - 0

0 - B

wwwww
j2 - E2

?
γ

q2 - A

wwwww
- 0
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(2) Weak isomorphism (called “weak equivalence” in [Busby 1968] and [Rosen-
berg 1982a]): there are ∗-isomorphisms α, β, γ making the following diagram
commute:

0 - B
j1 - E1

q1 - A - 0

0 - B
?
β

j2 - E2

?
γ

q2 - A
?
α

- 0

(3) Strong (unitary) equivalence: there is a unitary u ∈M(B) such that τ2(a) =
π(u)τ1(a)π(u)∗ for all a ∈ A.

(4) Weak (unitary) equivalence: there is a unitary v ∈ Q(B) such that τ2(a) =
vτ1(a)v∗ for all a ∈ A.

(5) Homotopy equivalence: the homomorphisms τi : A→ Q(B) are homotopic.
(6) Stable equivalence: will be discussed in 15.6.3.

One could also consider a very weak equivalence relation regarding the two ex-
tensions as equivalent if E1 and E2 are isomorphic (or just homotopy equivalent)
without regard to how the isomorphism respects A and B. Such an equivalence,
while of interest in some situations, is rather unnatural from the point of view
of studying extensions.

It follows from 15.3.1(a) and the uniqueness of pullbacks that two extensions
are strongly isomorphic if and only if their Busby invariants coincide. Thus the
Busby invariant exactly determines the strong isomorphism class of an extension.

It is trivial to check that strong isomorphism =⇒ strong equivalence =⇒
weak equivalence; if the unitary group of M(B) is connected (in particular, if
B is a σ-unital stable algebra (12.2.1)), then strong equivalence =⇒ homotopy
equivalence.

Examples 15.4.1. (a) Again returning to the situation of 15.1.2, all four exten-
sions are distinct under all the equivalence relations except weak isomorphism.
The extensions corresponding to C0((0, 1]) and C0([0, 1)) are weakly isomorphic.

(b) We examine extensions of Mn by K. Any homomorphism τ from Mn to Q
can be lifted to B as follows. Let {ēij} be the matrix units in τ(Mn). First lift
the {ēii} to orthogonal projections pii in B. Let w ∈ B with π(w) = ē1i, and
let e1i be the partial isometry in the polar decomposition of p11wpii. Then e1i

is a partial isometry in B with π(e1i) = ē1i, e∗1ie1i ≤ pii, e1ie
∗
1i ≤ p11. If we set

eij = e∗1ie1j , then {eij} form a lifted set of matrix units.
Note that even if

∑
ēii = 1Q, we cannot in general arrange that p =

∑
eii =

1B , i.e. τ will not generally have a unital lifting. p is a projection of finite
codimension k; by adding on a homomorphism from Mn to (1−p)B(1−p) ∼= Mk,
we may arrange that 0 ≤ k < n. This number k is well defined by the extension
and is called the defect of τ .

Now let τ1 and τ2 be extensions; we want to determine when they are strongly
or weakly equivalent. Let {emij} be a lifted set of matrix units for τm, and let
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u1 be a partial isometry with u∗1u1 = e1
11 and u1u

∗
1 = e2

11. Set ui = e2
i1u1e

1
1i,

u =
∑
ui. Then u is a partial isometry, and π(u) conjugates τ1 to τ2.

If τ1 and τ2 are both nonunital, then u can be enlarged to a unitary, so τ1 and
τ2 are strongly equivalent. If τ1 and τ2 are both unital, then u is a Fredholm
operator whose index is (defect τ1)−(defect τ2). π(u) is unitary, so τ1 and τ2
are weakly equivalent, but if the defects are different they cannot be strongly
equivalent. If one extension is unital and the other nonunital, then they obviously
cannot be weakly equivalent.

So we have shown that there are exactly 3 weak equivalence classes and n+ 2
strong equivalence classes of extensions of Mn by K:

(1) The nonessential extension K ⊕Mn(τ = 0).
(2) The essential nonunital extensions (τ injective and nonunital).
(3) The essential unital extensions of defect k (0 ≤ k < n).

Strong and weak isomorphism coincide with strong equivalence in this case.

It turns out that strong and weak isomorphism are not very tractable equivalence
relations on extensions in general; the other relations are much more amenable
to analysis by methods of noncommutative topology.

Instead of considering all extensions, one could restrict to essential extensions
(ones with injective Busby invariant) and/or, if A is unital, one could restrict to
unital extensions (ones in which τ is unital). In special cases, one might restrict
attention to extensions which were of some other special form (cf. 15.12). The
same equivalence relations make sense for such restricted classes.

15.5. Trivial Extensions

We say that an extension is trivial if the Busby invariant τ : A→ Q(B) lifts
to a ∗-homomorphism from A to M(B). This will be the case if and only if the
associated exact sequence splits, i.e. if there is a cross-section ∗-homomorphism
s : A→ E such that q ◦ s = 1A.

Examples 15.5.1. (a) When A = C, B = C0((0, 1)) (15.1.2), the extensions
corresponding to C0((0, 1))⊕C and C(S1) are trivial, while the other two are
nontrivial.

(b) All extensions of Mn by K are trivial.

In general, there are many trivial extensions. For example, one can always form
the “most trivial extension” A ⊕ B; this is the extension with Busby invariant
0. If B is unital, then this is the only extension, since Q(B) = 0. However, if B
is nonunital, M(B) is large, and one would expect many other extensions. If B
is stable, then for any separable A there is an injective ∗-homomorphism from
A into M(B) whose image does not intersect B; hence there are essential trivial
extensions in this case. If A is separable and unital, and B is stable, one can
construct both unital and nonunital essential trivial extensions in this way.
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It is remarkable that, if B = K and A is separable, up to strong equivalence the
variations described above are the only possible ones: by a theorem of Voiculescu
(15.12.3), two essential trivial extensions are strongly equivalent if and only if
they are either both unital or both nonunital.

The example of Mn by K shows that we must be careful in stating what is
meant by a unital trivial extension. We will say that a trivial extension τ is
strongly unital if τ lifts to a unital ∗-homomorphism from A to M(B). Note
that if there is a unital ∗-homomorphism from A to C (in particular, if A is
commutative), then any unital trivial extension is strongly unital.

The term “trivial” is used for these extensions since we will need to regard
them as trivial elements for the additive structure described below, in order to
obtain a reasonable algebraic structure (a group in good cases).

15.6. Additive Structure

In this paragraph, we assume B is stable. Then for any A there is an ad-
ditive structure on the set of strong (or weak) equivalence classes of extensions
of A by B. Fix an isomorphism of K with M2(K); this isomorphism induces
an isomorphism B ∼= M2(B) and hence isomorphisms M(B) ∼= M2(M(B)),
Q(B) ∼= M2(Q(B)). These isomorphisms are called standard isomorphisms and
are uniquely determined up to unitary equivalence.

Definition 15.6.1. If τ1, τ2 are extensions of A by B, then the sum τ1⊕τ2 is the
extension whose Busby invariant is τ1 ⊕ τ2 : A→ Q(B)⊕Q(B) ⊆M2(Q(B)) ∼=
Q(B), where the last isomorphism is a standard isomorphism.

We have cheated slightly here: the sum of two extensions is well defined only up
to strong equivalence. Thus we should really define the sum on strong equivalence
classes, giving a binary operation on the set of strong equivalence classes.

Proposition 15.6.2. Addition is a well defined binary operation on the set
Ext(A,B) of strong equivalence classes of extensions of A by B, and is associa-
tive and commutative. So Ext(A,B) is a commutative semigroup. The following
form subsemigroups of Ext(A,B):

(a) the classes of trivial extensions;
(b) the classes of essential extensions;
(c) if A is unital , the unital extensions;
(d) if A is unital , the strongly unital trivial extensions.

(Some of these subsemigroups may be empty in general .) Addition also respects
weak equivalence and homotopy equivalence; so there are semigroups Extw(A,B),
Exth(A,B) which are quotients of Ext(A,B) (sometimes called Exts(A,B)).

The simple proof is left to the reader.

Definition 15.6.3. We define Ext(A,B) = Exts(A,B) as the quotient of
Ext(A,B) by the subsemigroup of trivial extensions. Similarly, Extw(A,B) and
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Exth(A,B) are defined as the quotients of Extw(A,B) and Exth(A,B) by the
subsemigroup of trivial extensions. For ∗ = s, w, h, we define Exte∗(A,B) as the
quotient of the subsemigroup of essential extensions by the subsemigroup of es-
sential trivial extensions. If A is unital, we define Extu∗(A,B), as the quotient
of the subsemigroup of unital extensions by that of strongly unital trivial exten-
sions, and Exteu∗ (A,B) as the quotient of the subsemigroup of essential unital
extensions by that of essential strongly unital trivial extensions. (Some of these
quotient semigroups may not be defined if the denominator semigroup is empty.)

Each of these semigroups has an identity (the class of trivial extensions).
Extw(A,B) is a quotient of Exts(A,B) and Exth(A,B) is a quotient of Extw(A,B).
For ∗ = e, u, eu, Ext∗w(A,B) is a quotient of Ext∗s(A,B) and Ext∗h(A,B) is a quo-
tient of Ext∗w(A,B). For ∗ = s, w, h, there is a homomorphism from Extu∗(A,B)
to Ext∗(A,B) and one from Exteu∗ (A,B) to Exte∗(A,B).

The equivalence relation on extensions that they represent the same element
of Exts(A,B) [resp. Extw, Exth] is called stable strong [resp. stable weak, stable
homotopy ] equivalence.

We will show presently that most of these semigroups coincide under mild
hypotheses. The only difference in most cases involves unital extensions.

Proposition 15.6.4. We always have Ext(A,B) = Extw(A,B).

Proof. If τ1 and τ2 are weakly equivalent via a unitary v ∈ Q(B), then τ1 ⊕ 0
and τ2 ⊕ 0 are weakly equivalent via diag(v, v−1). diag(v, v−1) lifts to a unitary
in M2(M(B)) by 3.4.1. �

Note that Extus (A,B) and Extuw(A,B) do not coincide in general: see 15.6.6(a).

Proposition 15.6.5. If there exists an essential trivial extension of A by B,
then Exte∗(A,B) = Ext∗(A,B) for ∗ = s, w, h. If A is unital , and there is
an essential unital trivial extension of A by B, then the same is true for Extu∗
and Exteu∗ . In particular , if A is separable, every stable equivalence class is
represented by an essential extension (unital if A is unital).

Examples 15.6.6. (a) Consider extensions of Mn by K. From 15.5.1(b) we
have that all extensions are trivial, so Ext(Mn,K) = 0. However, we have that
Extus (Mn,K) ∼= Zn (at least as a set, and it is easy to check that the group
operation is the same). Extuw(Mn,K) is trivial.

(b) Consider extensions of C(S1) by K. By 15.6.5 we need only consider essential
extensions. It is also only necessary to consider unital extensions: if τ : C(S1)→
Q is an extension, set p = τ(1), and let P be a projection in B with π(P ) = p.
P is an infinite-rank projection (unless τ = 0), so if τ ′ is the restriction of τ to
PH, τ is strongly equivalent to τ ′ ⊕ 0.

A unital extension of C(S1) by K is just a choice of a unitary in Q. It is
clear that Exth(C(S1),K) = Extuh(C(S1),K) ∼= Z via Fredholm index. With a
bit of work, we can show the same for Ext(C(S1),K) and Extus (C(S1),K): if
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v is a unitary in Q, then v can be written as π(V ), where V is an isometry
or coisometry in B. By the von Neumann–Wold decomposition [Halmos 1967,
Problem 118] V is unitarily equivalent to Un⊕W (if V is an isometry) or U∗n⊕W
(if V is a coisometry), where U is the unilateral shift and W is unitary. Thus
any extension is stably strongly equivalent to one coming from powers of the
unilateral shift; these are obviously classified by Fredholm index.

(c) Let A = Q, B = K. There is one nonessential extension and a myriad of
essential extensions in this case. The only trivial extension is the nonessential
extension, so the semigroups Exte∗(Q,K), Extu∗(Q,K), Exteu∗ (Q,K) are not even
defined. Calculating Ext(Q,K) and Exth(Q,K) amounts to classifying unital
endomorphisms of Q up to unitary equivalence or homotopy, a problem which
appears hopeless at the moment (it is unknown, for example, whether or not
Q has outer automorphisms). The semigroup Ext(Q,K) is obviously very bad,
however; it fails to have any invertible elements except the identity, and it may
very well fail to have cancellation.

This example shows the pathology which can occur if we allow A to be non-
separable. To obtain a reasonable theory, we will for the most part only consider
extensions where A is separable.

If B is not stable, we can define Ext(A,B), etc., to be Ext(A,B ⊗K). It is easy
to check that if B is already stable, this definition of Ext(A,B) agrees with the
previous one. If A is separable, the other groups also agree.

It is possible to define an analogous group structure on the set of extensions
of A by B even if B is not stable, as long as B ∼= M2(B); this idea, with B = O2,
plays a crucial role in Kirchberg’s classification of purely infinite C∗-algebras
[Kirchberg 1998].

15.7. Inverses

Not much is known in general about the semigroup Ext(A,B). It can be very
pathological as shown in 15.6.6(c). Even if A is separable, it is not known in
general whether the semigroup has cancellation.

We can, however, give a nice description of the invertible classes. In good cases
(e.g. if A is separable and nuclear) we will show that every class is invertible, i.e.
Ext(A,B) is an abelian group.

The key observation is as follows. Suppose τ is an invertible extension, i.e.
there is an extension τ−1 such that τ ⊕ τ−1 is trivial. Then τ ⊕ τ−1 : A →
M2(Qs(B)) lifts to a ∗-homomorphism

φ =
[
φ11 φ12

φ21 φ22

]
: A→M2(Ms(B))

φ11 (and also φ22), being the compression of a ∗-homomorphism, must be a
completely positive contraction from A to Ms(B), and π ◦ φ11 = τ . So if τ is
invertible, then τ has a completely positive lifting to Ms(B).
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The converse is true by the Generalized Stinespring Theorem (13.7.1) if A is
separable: if τ has a completely positive contractive lifting φ11 to Ms(B), then
φ11 can be dilated to a homomorphism

φ = (φij) : A→M2(Ms(B)),

which may be chosen unital if A is unital. π ◦ φ11 = τ is a homomorphism, so
(it is easily checked) π ◦ φ22 is also a homomorphism from A to Qs(B). π ◦ φ22

is an inverse for τ . Thus we have proved

Theorem 15.7.1. If A is separable, an extension τ : A → Qs(B) defines an
invertible element of Ext(A,B) if and only if τ lifts to a completely positive
contraction from A to Ms(B). If A is unital and τ is unital , then τ defines an
invertible element of Extus (A,B) if and only if τ lifts to a (not necessarily unital)
completely positive contraction from A to Ms(B). (Such an extension is called
semisplit .)

Actually, the requirement that the completely positive lifting be a contraction
is not necessary: if there exists a completely positive lifting, there exists a com-
pletely positive contractive lifting [Cuntz and Skandalis 1986, 2.5].

There is a separable C∗-algebra A such that Ext(A,C) is not a group [Ander-
son 1978].

15.7.2. Let A be separable. If we consider the group Ext(A,B)−1 of invertible
elements of Ext(A,B), we may express the elements as pairs (φ, P ), where φ is a
∗-homomorphism from A to Ms(B) and P is a projection in Ms(B) which com-
mutes with φ(A) mod B⊗K. A pair is trivial if and only if P actually commutes
with φ(A). Since φ and P are only determined up to “compact perturbation”
(modulo B ⊗ K), we must regard two pairs which agree mod B ⊗ K as identi-
cal. Strong equivalence corresponds to unitary equivalence of pairs, and sum to
direct sum of pairs. Thus the group Ext(A,B) is isomorphic to the quotient of
the semigroup of equivalence classes of such pairs, under the equivalence relation
generated by unitary equivalence and “compact perturbation”, with direct sum,
modulo the subsemigroup of classes of exact (trivial) pairs.

15.8. Nuclear C∗-Algebras

We digress to give a very brief survey of nuclear C∗-algebras. For more details,
and proofs of the results, see [Lance 1982] and the references therein.

Nuclear C∗-algebras are a very important class of C∗-algebras, large enough to
include most C∗-algebras which arise “naturally”; yet nuclear C∗-algebras have
nice structural properties which are of great technical use in applications. The
following two theorems, which are an amalgamation of results of Choi, Connes,
Effros, Haagerup, and Lance, summarize the most important properties of the
class of nuclear C∗-algebras.

Theorem 15.8.1. Let A be a C∗-algebra. The following conditions are equiva-
lent :
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(1) For every C∗-algebra B, the algebraic tensor product A � B has a unique
C∗-cross norm.

(2) The identity map from A to A can be approximated pointwise in norm by
completely positive finite-rank contractions.

(3) A∗∗ is an injective (“hyperfinite”) von Neumann algebra.
(4) A is C∗-amenable: every derivation from A into a dual normal Banach A-

module is inner .

A C∗-algebra satisfying these conditions is called nuclear .

The term “nuclear” comes from condition (1) in analogy with the use of the
same term in topological vector space theory. Condition (2) is an analog of
(although not the same as) the metric approximation property for Banach spaces.
Condition (3) says that π(A)′′ is injective for any representation π of A; since
the injective von Neumann algebras are the “next step up” from the type I von
Neumann algebras in terms of complexity, the class of nuclear C∗-algebras is one
step up from the type I C∗-algebras. Condition (4) is an analogy with amenable
groups, and says that nuclear C∗-algebras are “cohomologically trivial”.

Theorem 15.8.2. The class of nuclear C∗-algebras contains all type I C∗-
algebras (in particular , all commutative or finite-dimensional C∗-algebras and
K), and is closed under stable isomorphism, quotients, extensions, inductive lim-
its, tensor products, and crossed products by amenable groups. So all inductive
limits of type I C∗-algebras (in particular , all AF algebras) are nuclear . If G is
a locally compact group which is amenable or connected , then C∗(G) is nuclear .
(Conversely , if G is discrete and C∗r (G) is nuclear , then G is amenable.)

It is not known whether the class of nuclear C∗-algebras is the smallest class of
C∗-algebras closed under the operations described in the theorem. See 22.3.4-
22.3.5 for more comments on this matter.

It is not true that a C∗-subalgebra of a nuclear C∗-algebra is always nuclear
[Choi 1979]. In fact, every non-type-I C∗-algebra contains a nonnuclear C∗-
subalgebra [Blackadar 1985a].

For our immediate purposes, the following lifting theorem is the main feature
of nuclear C∗-algebras. This theorem is due to Choi and Effros [1976], with an
important special case due to Arveson [1977].

Theorem 15.8.3. Let A be a nuclear C∗-algebra, D any C∗-algebra, J a (closed
two-sided) ideal of D, π : D → D/J the quotient map. Let ψ : A → D/J be
a completely positive contraction (e.g . a ∗-homomorphism). Then there is a
completely positive contraction φ : A→ D with ψ = π ◦ φ.

Corollary 15.8.4. If A is a separable nuclear C∗-algebra and B is any C∗-
algebra, then Ext(A,B) is a group. If A is unital , then Extus (A,B) is also a
group.
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Effros and Haagerup [1985] have characterized those C∗-algebras A for which
Ext(A,C) is a group; the class is strictly larger than the class of nuclear C∗-
algebras, but does not (yet) have a good intrinsic definition.

Theorem 15.8.3 remains true if we assume D is nuclear and A is arbitrary.
However, this is irrelevant for our purposes since Ms(B) is never nuclear, even
if B is. (Even B is nonnuclear.)

15.9. Functoriality

It is obvious that Ext is contravariantly functorial in the first variable, i.e. if
f : A1 → A2 is a ∗-homomorphism, then there is a semigroup homomorphism
f∗ : Ext(A2, B)→ Ext(A1, B), defined by f∗[τ ] = [τ ◦ f ]. This homomorphism
drops to a homomorphism, also denoted f∗, from Ext∗(A2, B) to Ext∗(A1, B)
(where ∗ = s, h); if f is injective, the same is true for Exte∗; if the Ai are
unital and f is unital, the same holds for Extu∗ . Thus, for fixed B, Ext( · , B),
etc., is a contravariant functor from C∗-algebras to abelian semigroups, and is a
contravariant functor from separable nuclear C∗-algebras to abelian groups.

Functoriality in B is a bit harder. If g : B1 → B2 is a ∗-homomorphism, and
B1 is σ-unital, then HB1⊗gB2 is a countably generated HilbertB2-module, and is
therefore a direct summand of HB2 . The map g thus induces a ∗-homomorphism
from Ms(B1) to Ms(B2) which sends B1⊗K into B2⊗K, and hence a ∗-homo-
morphism g̃ from Qs(B1) to Qs(B2). If [τ ] ∈ Ext(A,B1), set g∗[τ ] = g̃ ◦ τ . It is
not difficult to see that the class of g̃◦τ in Ext(A,B2) depends only on the class of
τ in Ext(A,B1), so that g∗ is well defined. g∗ is obviously a homomorphism. Thus
Ext(A, · ) is a covariant functor from σ-unital C∗-algebras to abelian semigroups.

15.10. Homotopy Invariance

It has been a difficult problem to prove that Ext(A,B) is homotopy invariant.
One may ask about homotopy invariance in each variable of Ext , meaning that
f0, f1 : A1 → A2 [resp. g0, g1 : B1 → B2] homotopic implies f∗0 = f∗1 , [resp.
g0∗ = g1∗].

Homotopy invariance has been proved for successively more general cases; the
present state of knowledge, while still incomplete, is quite satisfactory.

Brown, Douglas, and Fillmore proved that Ext(A,C) is homotopy invariant
in A for A separable, commutative, and unital. O’Donovan [1977] and Salinas
[1977] extended this result to the case where A is separable and quasidiagonal.
Finally, Kasparov proved that Ext(A,B)−1 is always homotopy invariant in both
variables if A is separable and B is σ-unital. So Ext(A,B) is at least homotopy
invariant in both variables if A is separable nuclear and B is σ-unital.

We will not give any proofs of homotopy invariance here. Kasparov’s proof of
the most general result known uses KK-theory, and will be deferred until 18.5.4.

Homotopy invariance in the second variable can be phrased as follows:
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Corollary 15.10.1. Let A be separable and B σ-unital . Then the quotient
map from Ext(A,B)−1 to Exth(A,B)−1 is an isomorphism. So if A is nuclear ,
the map from Ext(A,B) to Exth(A,B) is an isomorphism.

15.11. Bott Periodicity, Exact Sequences

The story with Bott periodicity and exact sequences is much the same his-
torically as homotopy invariance: the results were proved by BDF in the case of
Ext(C(X),C), for X a compact metric space, and extended by Pimsner, Popa,
and Voiculescu [Pimsner et al. 1979; 1980] to Ext(A,C) for A separable nuclear.
The most general results known are due to Kasparov:

Theorem 15.11.1 (Bott Periodicity). If A is separable and B is σ-unital ,
then Ext(S2A,B)−1 and Ext(A,S2B)−1 are naturally isomorphic to Ext(A,B)−1.

Proof. See 19.2.2. �

Theorem 15.11.2. If A is separable nuclear , J is an ideal in A, and B is
σ-unital , then there is a natural six-term cyclic exact sequence

Ext(A/J,B)
q∗ - Ext(A,B)

j∗ - Ext(J,B)

Ext(SJ,B)

∂ 6

� j∗
Ext(SA,B) �

q∗
Ext(S(A/J), B)

?
∂

where j : J → A is the inclusion and q : A→ A/J the quotient map. There is a
similar exact sequence in B for fixed A.

Proof. See 19.5.4. �

Because of these results, we sometimes write Ext1(A,B) = Ext(A,B) and

Ext0(A,B) = Ext(SA,B) ∼= Ext(A,SB).

The reason for this choice of indexing will become clear when we consider K-
homology (16.3) and KK-theory.

15.12. Absorbing Extensions

In good cases, it can be shown that the stabilization obtained by dividing out
Ext(A,B) by the subsemigroup of trivial extensions is unnecessary or at least
can be accomplished in a much cleaner manner.

Definition 15.12.1. Let A and B be C∗-algebras. An extension τ of A by B is
absorbing if it is strongly equivalent to τ ⊕ σ, for any trivial extension σ. If A is
unital, τ is unital-absorbing if it is strongly equivalent to τ ⊕ σ, for any strongly
unital trivial extension σ.

Note that if σ is an absorbing trivial extension, then τ ⊕ σ is an absorbing
extension for any τ . Also note that even if A is unital, an absorbing extension
of A by B is necessarily nonunital.
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Proposition 15.12.2. The classes of absorbing extensions form a (possibly
empty) subsemigroup of Ext(A,B); the restriction of the quotient map

Ext(A,B)→ Ext(A,B)

to the absorbing classes is injective. If there exists an absorbing trivial extension,
then the map from the absorbing classes to Ext(A,B) is also surjective. If A is
unital and there exists a unital-absorbing trivial extension, then the quotient
map from the classes of unital-absorbing extensions to Extus (A,B) is also an
isomorphism.

We have the following theorem of Voiculescu [1976]. See [Arveson 1977] for a
good exposition and proof. The case A = C(X) has a more elementary proof,
which was done earlier by BDF; see [Douglas 1980, Theorems 4 and 5].

Theorem 15.12.3. If A is separable, every essential nonunital extension of A
by K is absorbing . If A is separable unital , every essential unital extension of A
by K is unital-absorbing .

So if A is separable, the map from the subsemigroup of Ext(A,C) consisting
of the essential nonunital extensions, to Ext(A,C), is an isomorphism; if A is
unital , the map from the subsemigroup of Ext(A,C) consisting of the essential
unital extensions, to Extus (A,C), is an isomorphism.

Kasparov generalized part of Voiculescu’s theorem [Kasparov 1975, Theorem 6;
1980b, 1.16], obtaining a somewhat weaker result for more general B:

Theorem 15.12.4. Let A be a separable [resp. separable unital ] C∗-algebra and
B a σ-unital C∗-algebra. Suppose either A or B is nuclear . Let τ be an essential
nonunital [resp. essential strongly unital ] trivial extension of A by K. Regard τ

as an extension of A by B ⊗ K through the identification 1 ⊗ B ⊆ M(B ⊗ K).
Then τ is absorbing [resp. unital-absorbing ].

It cannot be true in general that every essential nonunital extension of A by B⊗K
is absorbing; even an essential trivial extension is not necessarily absorbing. If
D is a quotient of B, then there is an induced quotient map from Ms(B) onto
Ms(D) [Pedersen 1979, 3.12.10], inducing a quotient map ρ : Qs(B) → Qs(D).
If A is separable, a necessary condition that τ be absorbing is that ρ∗(τ) be an
essential extension of A by D ⊗K for each such D. Such an extension is called
residually essential.

Example 15.12.5. Let A = C, B = C0([0, 1)). Define an extension of A by B
by τ(1) = 1⊗p ∈ C([0, 1],K) ⊆Ms(B), where p is a one-dimensional projection
in K. Then τ is an essential nonunital trivial extension which is not residually
essential. (Consider the quotient map of B to D = C sending f to f(0).)

It is not known whether every residually essential nonunital extension is absorb-
ing. Rosenberg and Schochet [1981] showed that if A and B are commutative,
B = C0(Y ) with Y + finite-dimensional, then every residually essential extension
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is absorbing. It would be interesting to have an intrinsic characterization of
absorbing extensions.

Actually, both Voiculescu’s and Kasparov’s theorems contain additional re-
sults about approximating one extension by unitary conjugates of another. We
have picked out the parts of the theorems which are most relevant for our pur-
poses.

15.13. Extensions of Graded C∗-Algebras

If A and B are graded C∗-algebras, we may also define Ext(A,B) in the same
manner as before, only requiring all homomorphisms to be graded. Thus one
wants to classify short exact sequences of graded C∗-algebras, the Busby invari-
ant is a graded homomorphism from A to Q(B) with its induced grading, etc.
We will consider extensions of graded algebras in 17.6.5. Unlike the ungraded
(trivially graded) case, however, there is not a good correspondence between
graded Ext and KK, and it is unclear how far the theory of graded Ext can be
taken in analogy with the ungraded theory.

15.14. Extensions and K-Theory

We know from 15.8.4 that Ext(C, B) and Ext(C0(R), B) are groups for any
B. Actually these groups are nothing but the K-groups of B.

The correspondence is easily seen using 12.2.3. An extension of C by B ⊗K
is exactly a choice of a projection in Qs(B). A trivial extension is a projection
in Qs(B) which lifts to a projection in Ms(B); these are exactly the projections
in Qs(B) whose class in K0(Qs(B)) is 0. In both Ext(C, B) and K0(Qs(B)) the
group operation is direct sum, and the equivalence relation is unitary equivalence
and addition of degenerate elements. Thus Ext(C, B) is naturally isomorphic to
K0(Qs(B)), which by 12.2.3 is naturally isomorphic to K1(B) via the connecting
map in the long exact sequence.

It is harder to see that Ext(C0(R), B) ∼= K1(Qs(B)) ∼= K0(B). It is clear
that Exth(C0(R), B) ∼= K1(Qs(B)), since extensions of C0(R) by B correspond
naturally to unitaries in Qs(B). There does not seem to be any good way to
show that Ext(C0(R), B) ∼= K0(B) except by invoking 15.10.1.

Example 15.14.1. We examine Ext(C, C0(R)). We know from above that
Ext(C, C0(R)) ∼= K−1(R) ∼= Z. The exact sequence

0→ C0(R)→ C0(R ∪ {+∞})→ C → 0

defines a generator. If we wish to describe this extension in standard form via its
Busby invariant τ , let f be a continuous function on R with limt→+∞ f(t) = 1
and limt→−∞ f(t) = 0, let p be a one-dimensional projection in K. Regard f ⊗p
as an element of M(C0(R)) ⊗ K ⊆ M(C0(R) ⊗ K) = Ms(C0(R)), and define
τ(z) = π(zf ⊗ p), where π : Ms(C0(R))→ Qs(C0(R)) is the quotient map.
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The inverse of this extension is the extension defined by

0→ C0(R)→ C0({−∞} ∪ R)→ C → 0.

As a related matter, we examine the homomorphism from Extuw(A,B) to
Ext(A,B) (in the case where A is unital). This map cannot be surjective in gen-
eral, since Extuw(C, B) (and also Extus (C, B)) is always trivial while Ext(C, B) ∼=
K1(B) may not be. K1(B) is the only obstruction, however:

Proposition 15.14.2. Let A be a separable unital C∗-algebra, and B a C∗-
algebra with K1(B) = 0. Then the map Extuw(A,B)→ Ext(A,B) is an isomor-
phism.

Proof. The proof is a jazzed-up version of the argument of 15.6.6(b). The
simple argument is left to the reader. �

16. Brown–Douglas–Fillmore Theory and Other Applications

16.1. We have seen that if A is separable and nuclear and B is σ-unital, then
the multitude of semigroups of the previous section are reduced to at most three:
Ext(A,B) and (if A is unital) Extus (A,B) and Extuw(A,B). If A is commutative
then even these last two coincide. Furthermore, these semigroups are abelian
groups.

Brown, Douglas, and Fillmore [Brown et al. 1973; 1977a] made the first careful
study of these groups in the case B = C; they were almost exclusively interested
in the case A = C(X) for a compact metrizable space X.

Definition 16.1.1. If A is a C∗-algebra, Ext(A) = Ext(A,C); if A is unital,
Exts(A) = Extus (A,C). (Sometimes Ext(A) is called Extw(A).) If X is a locally
compact Hausdorff space, then Ext(X) = Ext(C0(X)); if X is compact, then
Exts(X) = Exts(C(X)).

Note that by 15.14.2 Ext(A) ∼= Extuw(A) if A is separable and unital; if A is
separable, unital, and commutative, then all the groups coincide.

As described in Section 15, BDF proved that Ext(X) is a homotopy-invariant
covariant functor on the category of compact metrizable spaces, and proved Bott
Periodicity and the six-term cyclic exact sequence, along with the special case of
Voiculescu’s theorem on absorbing extensions. The main theoretical consequence
of these general results is that Ext(X) ∼= K1(X), the first K-homology group of
X. Other important consequences include the classification of essentially normal
operators and the structure of some naturally occurring C∗-algebras.

16.2. Essentially Normal Operators

We begin with the simplest case of extensions. An operator T ∈ B(H) is
essentially normal if T ∗T − TT ∗ ∈ K. In other words, if t = π(T ) is the image
in the Calkin algebra, then T is essentially normal if t is normal. The basic
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question studied by BDF was: under what conditions could T be written as
N+K, where N is normal and K compact? More generally, given two essentially
normal operators T1 and T2, under what conditions is T1 unitarily equivalent to
a compact perturbation of T2?

For the second question, one obvious necessary condition is that T1 and T2

have the same essential spectrum (the spectrum of the image in the Calkin
algebra). So the question may be rephrased: given a compact subset X of C,
denote by EN(X) the set of essentially normal operators with essential spectrum
X. Given T1, T2 ∈ EN(X), under what conditions is T1 unitarily equivalent to a
compact perturbation of T2?

The problem is translated into an extension problem by noting that if T ∈
EN(X), then C∗(t, 1) ∼= C(X); so if we set A(T ) = C∗(T,K, 1), A(T ) corre-
sponds naturally to an extension of C(X) by K. The question of whether T1 is
unitarily equivalent to a compact perturbation of T2 is exactly the question of
whether the corresponding extensions are strongly equivalent, i.e. whether they
represent the same element of Ext(X).

The main theorem in the classification of essentially normal operators is the
following:

Theorem 16.2.1. If X ⊆ C, Ext(X) ∼= [C \ X,Z], the group of homotopy
classes of continuous functions of compact support from C \ X to Z. Thus
Ext(X) ∼=

∏
Z, with one factor for each bounded component of C \ X. The

isomorphism sends the class of T ∈ EN(X) to
∏

Index(T − λn1), where λn is
in the n-th bounded component of C \X. (This Index is constant on connected
components of C \X and vanishes on the unbounded component .)

This is actually a special case of the Universal Coefficient Theorem (16.3.3,
23.1.1): if X is a compact subset of C, then K1(X) ∼= π1(X) = [X,S1] ∼= ⊕Z
with one summand for each bounded component of C \X; and K0(X) is torsion-
free.

Corollary 16.2.2. An essentially normal operator T can be written T =
N +K, with N normal and K compact , if and only if Index(T − λ1) = 0 for all
λ not in σe(T ). If T1, T2 ∈ EN(X), then T1 is unitarily equivalent to a compact
perturbation of T2 if and only if Index(T1 − λ1) = Index(T2 − λ1) for all λ /∈ X.

Corollary 16.2.3. If X is a compact subset of C with connected complement ,
then any essentially normal operator with essential spectrum X can be written as
(normal) + (compact), and any two essentially normal operators with essential
spectrum X are unitarily equivalent up to compact perturbation. In particular ,
any T ∈ EN(X) is a compact perturbation of a diagonalizable normal operator
(one with an orthonormal basis of eigenvectors).

In the case X ⊆ R (the case of essentially self-adjoint operators), 16.2.3 ap-
plies and is known as the Weyl-von Neumann Theorem. Berg later showed that
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any two normal operators with the same essential spectrum are unitarily equiv-
alent up to compact perturbation; Voiculescu’s Theorem may be regarded as a
generalization of this fact.

Example 16.2.4. Let X be the “Hawaiian earring” formed as the union of all
the circles of radius 1/n centered at (1/n, 0). Then Ext(X) is the full direct
product of a countable number of copies of Z; thus Ext(X) is uncountable. To
obtain an explicit essentially normal operator corresponding to the sequence
(sn) ∈

∏
N Z, take

⊕(
1
n + 1

nU
dn
)
, where dn = sn − sn−1, U is the unilateral

shift, Uk = U∗|k| for k < 0, and U0 = V , the bilateral shift.

16.3. Ext as K-Homology

Complex K-theory is an extraordinary cohomology theory on compact Haus-
dorff spaces, and it has been of great interest to find concrete realizations of
the corresponding homology theory, called K-homology. If X is a finite com-
plex, K∗(X) can be defined by Spanier–Whitehead duality by embedding X as
a subset of a sphere of large odd dimension and taking the K-theory of the
complement. This definition is very clumsy to use in practice.

Atiyah [1968] proposed an operator-theoretic definition by generalizing the
notion of an elliptic operator.

Definition 16.3.1. If X is a compact space, Ell(X) is the set of triples
(σ0, σ1, T ), where σi is a representation of C(X) on a Hilbert space Hi and
T is a Fredholm operator from H0 to H1 with Tσ0(f)− σ1(f)T compact for all
f ∈ C(X).

The standard example is where T is an elliptic pseudodifferential operator of
degree 0 between two smooth vector bundles E0 and E1 over X. If Ei is given
a smooth Hermitian structure, T defines a Fredholm operator between the L2-
spaces which almost intertwines the action of C(X) by multiplication.

There is a binary operation on Ell(X) given by orthogonal direct sum.
Atiyah defined a map from Ell(X) toK0(X) using a slant product, and showed

that in the case of an actual pseudodifferential operator, the image in K0(X)
(which can be called the “analytic index” of the operator) coincides with the
“topological index” defined by means of the Chern character. He was able to
conclude that the map from Ell(X) to K0(X) is surjective if X is a finite complex.

Atiyah was not able to give a description of the proper equivalence relation
on Ell(X) to make the quotient equal K0(X). A byproduct of the BDF work
was to give a characterization. Actually, there are several ways of describing
the equivalence relation; one way is that it is the equivalence relation on triples
generated by unitary equivalence, orthogonal direct sum with a degenerate triple
(where T is invertible and actually intertwines σ0 and σ1), and homotopy of T
keeping the σi fixed. We will study this situation in great detail when we develop
KK-theory.

Once we have K0, we can define the higher K-homology groups by suspension.
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16.3.2. If A is any C∗-algebra, there is a pairing of Ext(A) and K1(A) which
generalizes the pairing of 16.2.1 and which is of fundamental importance. An
extension τ of A by K extends uniquely to a unital ∗-homomorphism from A+

to Q, and hence a unital homomorphism τ̃ from Mn(A+) to Mn(Q) ∼= Q. If u
is a unitary in Mn(A+), define 〈τ, u〉 = Index(τ̃(u)) ∈ Z. It is easily seen that
〈τ, u〉 depends only on the class of τ in Ext(A) and the class of u in K1(A). Thus
each τ ∈ Ext(A) defines a homomorphism γ∞(τ) from K1(A) to Z. So we get a
homomorphism

γ∞ : Ext(A)→ Hom(K1(A),Z)

If τ ∈ ker(γ∞), then in the K-theory exact sequence

0 = K1(K)→ K1(E)→ K1(A) ∂−→ K0(K)→ K0(E)→ K0(A)→ K1(K) = 0

corresponding to the extension 0→ K → E → A→ 0 of τ , the map from K1(E)
to K1(A) is surjective so ∂ = 0, i.e. we get a short exact sequence

0→ Z = K0(K)→ K0(E)→ K0(A)→ 0

which defines an element of Ext1
Z(K0(A),Z) (where Ext1

Z is the derived functor
of the Hom-functor in homological algebra).

Brown [1984] proved that for A = C(X), this procedure defines an isomor-
phism between ker(γ∞) and Ext1

Z(K0(X),Z), thus obtaining the Universal Co-
efficient Theorem:

Theorem 16.3.3. If X is a compact metric space, the above procedure yields
an exact sequence

0→ Ext1
Z(K0(X),Z)→ Ext(X)→ Hom(K1(X),Z)→ 0

This sequence is natural in X, and splits unnaturally .

Rosenberg and Schochet [1986; 1987] have obtained far-reaching generalizations
of this theorem, which will be the subject of Section 23.

Using this theorem, one can obtain an abstract isomorphism between Ext(X)
and K1(X). A more explicit correspondence with Atiyah’s theory is described
in [Douglas 1980, Chapter 5]; we will not get into this now since it will fall out
of our work on KK-theory. To get an idea of how the correspondence works,
and as motivation for KK-theory, note the similarity of Atiyah’s definition of
K0(X) with the description of Ext(X) in 15.7.2 (note that in Atiyah’s definition
it suffices to consider triples with H0 = H1), and compare the definitions with
the definitions of K0(X) and K1(X) given in 12.2.4.

16.3.4. Because of the isomorphism of Ext(X) withK1(X), the groups Ext i(A)−1

are sometimes called the K-homology groups of the C∗-algebra A, denoted Ki(A)
(the index conventions require an upper index for a contravariant functor). The
term “K-homology” does not really seem to be appropriate, since Ext∗ is actu-
ally a cohomology theory on the category of separable nuclear C∗-algebras; we
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will not use the term “K-homology” in the sequel, although the notation Ki(A)
(i = 0, 1) will be useful.

16.4. EXERCISES AND PROBLEMS

16.4.1. Let t1, . . . , tn be commuting normal elements in Q. We can ask various
lifting questions such as:

(1) Can we lift t1, . . . , tn to commuting T1, . . . , Tn ∈ B?
(2) Can we lift t1, . . . , tn to T1, . . . , Tn ∈ B such that C∗(Ti) commutes with
C∗(Tj) for i 6= j? (Equivalently, do there exist T1, . . . , Tn such that Ti
∗-commutes with Tj for i 6= j, i.e. Ti commutes with Tj and T ∗j ?)

(3) Can we lift t1, . . . , tn to commuting normal operators T1, . . . , Tn ∈ B?

These questions are successively stronger (question (3) is stronger than (2) by
the Fuglede theorem).

The questions can be rephrased: if T1, . . . , Tn are essentially commuting es-
sentially normal operators, when can T1, . . . , Tn be perturbed by compacts to
yield commuting (∗-commuting, commuting normal) operators?

(a) If X ⊆ Cn is the joint essential spectrum of (t1, . . . , tn), then the canonical
isomorphism C(X) ∼= C∗(t1, . . . , tn, 1) defines an element of Ext(X). The answer
to (3) is yes if and only if this extension is trivial.

Conversely, if X ⊆ Cn and τ ∈ Ext(X), then τ defines a natural set of com-
muting normal elements (τ(f1), . . . , τ(fn)) in Q, where fi is the i-th coordinate
function in C(X).

(b) Let X ⊆ C2 be homeomorphic to RP2, and let τ be a nontrivial element of
Ext(X) ∼= Z2. Then τ defines a commuting pair t1, t2 of normal elements of Q
such that t1 ⊕ t1 and t2 ⊕ t2 can be lifted to commuting normal operators, but
t1 and t2 cannot be. This type of torsion phenomenon is a typical example of
the difficulties which arise only in the case of more than one operator.

(c) If t1 = u, the image of the unilateral shift in Q, and t2 = 1Q, then the
answer to (2) is obviously yes, although the answer to (3) is no. If t1 = t2 = u,
the answer to (1) is yes and the answer to (2) is no. Questions (1) and (2) (for
n = 2) are studied in [Davidson 1982]; the extensions for which the answer to (2)
is yes form a subsemigroup L(X) of Ext(X) which is a group in all known cases,
and which can be characterized in many instances. L(X) in general depends on
how X is embedded in C2.

16.4.2. An [essentially] n-normal operator is an operator unitarily equivalent to
one of the form [Tij ] ∈ B(H⊗Cn), where the Tij , for 1 ≤ i, j ≤ n, are [essentially]
commuting [essentially] normal operators. Essentially n-normal operators corre-
spond to matrices [tij ] ∈Mn(Q), where the tij are commuting normal elements
in Q.

The fundamental question, not yet solved in full generality, is to classify essen-
tially n-normal operators up to either weak or strong equivalence (just as with
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Mn, the two notions differ in general), and in particular to determine which es-
sentially n-normal operators are compact perturbations of n-normal operators.

(a) The reducing matricial spectrum of an n-normal operator T = [Tij ] is the
set

Rn(T ) = {a ∈Mn | there is a ∗-homomorphism π :C∗(T )→Mn with π(T ) = a}.

The reducing essential matricial spectrum of an essentially n-normal operator
T = [Tij ] is the set

Ren(T ) = {a ∈Mn | there is a ∗-homomorphism π : C∗(t)→Mn with π(t) = a}.

(b) If T is essentially n-normal and X = Ren(T ), then T defines an extension
of Mn(C(X)) ∼= C(X,Mn). Conversely, any extension of Mn(C(X)) defines
an essentially n-normal operator T with Ren(T ) = X. The equivalence classes
of essentially n-normal operators with reducing essential matricial spectrum X

form a group closely related to Ext(X); for example, there are exact sequences.

Essentially n-normal operators have been primarily studied by Salinas [1979;
1982a; 1982b]. The case n = 2 (essentially binormal operators) is somewhat
simpler, and is treated in [McGovern et al. 1981].

16.4.3. Let G be the real “(ax+b)-group”, the group{[
a b

0 1

]
: a, b ∈ R, a 6= 0

}
.

(a) Show that C∗(G)+ is an extension of C(X) by K, where X is a “figure 8”.

(b) Calculate the index of suitable operators in order to show that the element
of Ext(X) ∼= Z2, when identified as in 16.2.1, is (1, 1).

(c) Conclude that the extension does not split (or even stably split).

This example is due to Diep [1974], and was one of the first applications of
BDF theory. Green [1977] and Rosenberg [1976] subsequently used BDF theory
to get information about the structure of the C∗-algebras of other solvable Lie
groups. Groups such as the Heisenberg group are much more difficult to analyze,
and are not yet completely understood; Kasparov [1975] has used more high-
powered Ext-theory to obtain some results. (Voiculescu [1981] also obtained
related results.) In fact, the Heisenberg group C∗-algebra has been one of the
main motivating forces for the development of Ext-theory beyond the BDF work.

16.4.4. Let X and Y be locally compact and second countable. Show that

Ext(C0(X), C0(Y )) ∼= RK0(F (X+) ∧ Y +),

where F (X+) is the functional Spanier–Whitehead dual spectrum of X+ and
RK0 is representable K-theory [Rosenberg and Schochet 1981].
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16.4.5. Show by an argument similar to 15.4.2(b) that Ext(On) ∼= Zn−1, and
that Exts(Mk(On)) ∼= Z ⊕ Zg, where g is the greatest common divisor of k and
n− 1. Show also that Ext0(On) = 0. More generally, Ext(OA) ∼= Zn/(1−A)Zn,
Ext0(OA) ∼= ker(1−A).

The calculation of Ext(On) was done independently by Brown, Paschke–
Salinas, and Pimsner–Popa, and the results of 10.11.8(c) were proved [Paschke
and Salinas 1979], before the K-theory of On was known.

16.4.6. (a) Let τ : A → Qs(B) be an extension. Define ατ : K0(τ(A)′) →
Ext(A,B), where τ(A)′ is the commutant of τ(A) in Qs(B), by the formula
ατ ([p])(a) = p(1⊗ τ(a)) for p a projection in Mn(τ(A)′) ∼= (1n⊗ τ(A))′ ⊆Mn⊗
Qs(B) ∼= Qs(B). Show that ατ is a well-defined homomorphism. Define a similar
homomorphism from K1(τ(A)′) ∼= K0(S(τ(A)′)) to Ext0(A,B) ∼= Ext(SA,B).

(b) If τ is absorbing, show that ατ is an isomorphism. In particular, if A is
separable and B = C, and τ is faithful and nonunital, then ατ is an isomorphism.
This may be regarded as a “noncommutative Spanier–Whitehead duality.”

(c) Use (b) to prove the following “poor man’s Pimsner–Voiculescu exact se-
quence” for Ext (cf. 10.2.1):

Theorem. If A is separable nuclear and B is σ-unital , and α ∈ Aut(A), then
there is a connecting map ∂ making the following sequence exact :

Ext0(A×α Z, B)
i∗ - Ext0(A,B)

1− α∗- Ext0(A,B)

Ext(A,B) �
1− α∗

Ext(A,B) �
i∗

Ext(A×α Z, B)
?
∂

These results are due to Valette [1983], based on earlier work of Paschke
[1981].

(The other vertical map can be filled in to give a true Pimsner–Voiculescu
exact sequence for Ext : see 19.6.1. Pimsner and Voiculescu obtained this exact
sequence for B = K in their original paper [1980a].)

16.4.7. (a) Let A be an AF algebra. Show directly that

Ext(A) ∼= Ext1
Z(K0(A),Z)

(cf. 16.3.3). So Ext(A) is trivial if and only if K0(A) is a free abelian group.

(b) If A is a unital AF algebra, show that Exts(A) ∼= Ext1
Z(K0(A)/〈[1A]〉,Z). So

Exts(A) is trivial if and only if K0(A) is free and A is not a matrix algebra over
some other C∗-algebra. For example, if A is the CAR algebra, then Exts(A) is
isomorphic to the additive group of 2-adic integers.

The groups Exts(A) were calculated in [Pimsner and Popa 1978; Pimsner 1979].
Handelman [1982] calculated Ext(A,B) and Exts(A,B) for more general pairs
of AF algebras (cf. 23.15.3).
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16.4.8. The strong operator topology induces a natural topology on Ext(X)
making it into a (not necessarily Hausdorff) topological group. The closure
of the identity is the maximal divisible subgroup. If X = lim←−Xn with Xn a
finite complex, then the closure of the identity is the kernel of the natural map
from Ext(X) to

∏
Ext(Xn). The kernel of γ∞ (16.3.2) is the maximal compact

subgroup; it is the torsion subgroup if X is a finite complex. The maximal
Hausdorff quotient of Ext(X) gives the Čech K-homology of X.

Characterize whichX have Ext(X) compact or discrete. Generalize the results
of this problem to Ext(A) and Ext(A,B). Show that if A is the CAR algebra,
then Ext(A) is topologically isomorphic to the (compact) additive group of 2-adic
integers.
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CHAPTER VIII

KASPAROV’S KK-THEORY

17. Basic Theory

One of the principal features of Kasparov theory is the great generality of the
definitions. In addition to the fact that the theory works for real and “real” C∗-
algebras as well as for complex ones, and allows a locally compact group action,
the definitions are made in such a way that the objects are extremely general.

This generality is both an advantage and disadvantage. The advantage is
that the objects of KK-theory can be recognized in a variety of quite different
situations, leading to broad applicability. Some of the contexts in which KK-
theory arises are given below, and others in section 24. On the other hand, the
generality of the objects creates a certain lack of concreteness which appears to
make the theory difficult to understand.

It is difficult to motivate the most general and useful form of the definition
from the point of view taken so far in these notes, although some motivation is
given in 12.2.4, 15.7.2, and 16.3. The best motivation comes from the theory of
pseudodifferential operators (17.1.2(e)). So rather than trying to give any more
motivation at first, we will simply plunge in and see later that all the K-groups
and Ext-groups considered so far are special cases of KK-groups.

We will begin with the general definitions, and then present some simplifica-
tions which can be made in the theory which lead to some concrete descriptions
of the objects from various points of view. The two principal points of view
we will take are the Fredholm Module Picture, which is essentially Kasparov’s
original viewpoint, and the Quasihomomorphism Picture due to Cuntz.

In order to simplify matters, we will not consider real or “real” C∗-algebras
at all (cf. 19.9.7), and group actions will only be treated in section 20. We will
work with graded C∗-algebras for reasons explained in section 14.

The theory works well only with C∗-algebras with countable approximate
identities (although the basic definitions can be made in general), so we will
restrict to this case whenever convenient. In fact, for some of the theory we will
have to limit ourselves to separable C∗-algebras.

17.1. Kasparov Modules

Definition 17.1.1. Let A and B be graded C∗-algebras. E(A,B) is the set
of all triples (E, φ, F ), where E is a countably generated graded Hilbert module

143



144 VIII. KASPAROV’S KK-THEORY

over B, φ is a graded ∗-homomorphism from A to B(E), and F is an operator
in B(E) of degree 1, such that [F, φ(a)], (F 2−1)φ(a), and (F −F ∗)φ(a) are all
in K(E) for all a ∈ A. The elements of E(A,B) are called Kasparov modules for
(A,B). [E(A,B) has nothing to do with E-theory (Section 25).] D(A,B) is
the set of triples in E(A,B) for which [F, φ(a)], (F 2−1)φ(a), and (F −F ∗)φ(a)
are 0 for all a. The elements of D(A,B) are called degenerate Kasparov modules.

Sometimes the φ is suppressed and (E,F ) is simply regarded as an (A,B)-
bimodule. We will usually avoid this notation, although it can be useful in
simplifying formulas.

There is a binary operation on E(A,B) given by direct sum; D(A,B) is closed
under this operation.

Examples 17.1.2. (a) Let φ : A → B be a graded ∗-homomorphism. Then
(B,φ, 0) is a Kasparov (A,B)-module. More generally, if φ : A → B ⊗̂K is a
graded ∗-homomorphism, then (ĤB , φ, 0) is a Kasparov (A,B)-module, where
K(ĤB) is identified with B ⊗̂K in the standard way. [Actually, (ĤB , φ, F ) is a
Kasparov (A,B)-module for any F ∈ BB of degree 1.] We could also associate to
φ the Kasparov (A,B)-module

(
B⊕Bop, φ⊕0,

[
0
1

1
0

])
. So there are two canonical

ways of associating elements of E(A,B) to each graded ∗-homomorphism from
A to B (which will give the same KK-element when the equivalence relation is
divided out). In fact, the elements of E(A,B) may be regarded as “generalized
homomorphisms” from A to B (17.6).

(b) Given a split exact sequence

0 - B
j
- D �

s

q
- A - 0

of graded C∗-algebras, we associate a Kasparov (D,B)-module(
B⊕Bop, ω⊕ω◦s◦q,

[
0
1

1
0

])
,

where ω is the canonical homomorphism from D to M(B) ∼= B(B) (15.2). This
Kasparov module (or its equivalence class) is called the splitting morphism of the
exact sequence. In the special case D ∼= B⊕A, the splitting morphism agrees
with the second type of E(D,B)-element associated to the projection of D onto
B as in part (a).

More generally, if

0 - B ⊗̂K
j
- D �

s

q
- A - 0

is a split exact sequence, we can associate the Kasparov (D,B)-module(
HB⊕Hop

B , ω⊕ω◦s◦q,
[

0
1

1
0

])
,

which will be called the splitting morphism.
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The splitting morphism generally depends on the cross section chosen, even
when the equivalence relation is divided out.

(c) If (Ei, φi, Fi) is a Kasparov (Ai, B)-module, for i = 1, 2, then (E1⊕E2, φ1⊕
φ2, F1⊕F2) is a Kasparov (A1⊕A2, B)-module. Similarly, if (Ei, φi, Fi) is a
Kasparov (A,Bi)-module, make Ei into a Hilbert B1 ⊕B2-module by letting
the other algebra act trivially. Then (E1⊕E2, φ1⊕φ2, F1⊕F2) is a Kasparov
(A, B1⊕B2)-module.

(d) If 0→ B → D → A→ 0 is an invertible extension of A by B, i.e. the Busby
invariant τ : A→ Q(B) dilates to a ∗-homomorphism

φ =
[
φ11 φ12

φ21 φ22

]
: A→M2(M(B))

(15.7), we associate to this extension the module
(
(B⊕B)⊗̂C1, φ⊗̂1,

[
1
0

0
−1

]
⊗̂ε
)

in E(A, B ⊗̂C1).

(e) Let M be a smooth closed manifold (compact without boundary). Fix a
Riemannian metric on M . Let V (0) and V (1) are vector bundles over M , and
P : C∞(V (0)) → C∞(V (1)) be an elliptic pseudodifferential operator of degree
0. V (0) and V (1) can be given Hermitian structures so that P extends to an
essentially unitary Fredholm operator from L2(V (0)) to L2(V (1)). Let H =
L2(V (0))⊕L2(V (1)), with H(i) = L2(V (i)). Let φ : C(M) → B(H) denote the
action as multiplication operators. Then(

H, φ,
[

0 Q

P 0

])
∈ E(C(M),C)

where Q is a parametrix for P .
This example is the original motivating example for KK-theory, and is crucial

for many of the applications described in Section 24.

(f) As a related example, let M be a complete Riemannian manifold. Give the
cotangent bundle its natural almost complex structure, and let D = ∂̄+∂̄∗ be the
Dolbeault operator on smooth forms with compact support. Let H be the Hilbert
space of L2-forms of bidegree (0, *) on T ∗M , graded by decomposing into forms
of even and odd degree. Then D is an essentially self-adjoint operator on H of
degree 1, and F = D(1+D2)1/2 makes (H, φ, F ) into a Kasparov (C0(T ∗M),C)-
module (where φ is again action as multiplication operators). The equivalence
class of this element is called the Dolbeault element of M , denoted [∂̄M ].

(g) Another related example which will be very important in applications is
the Gysin or “shriek” map. The construction is a bit technical; we will outline
it here for readers familiar with the terminology. Let V and W be smooth
manifolds, not necessarily compact, and let f : V → W be a smooth map, not
necessarily proper. Let d be a Riemannian metric on W such that whenever
d(p, q) < 1, there is a unique tangent vector X(p, q) ∈ TpW with ‖X(p, q)‖ < 1
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and exppX(p, q) = q, i.e. there is a unique geodesic between p and q of length
less than one. Set Vp = {x ∈ V | d(f(x), p) < 1}.

If f is K-oriented, i.e. there is a spinc-structure on TV ⊕f∗(TW ), let S± be
the corresponding spinors. We can then form the corresponding Hilbert space
Hp = L2(Vp, S+)⊕L2(Vp, S−). Give Hp the grading with H(0)

p = L2(Vp, S+)⊕0
and H(1)

p = 0⊕L2(Vp, S−). The Hp can be made into a continuous field of
Hilbert spaces over W ; the set of continuous sections vanishing at infinity forms
a Hilbert C0(W )-module E in an obvious way.

There is a “Dirac operator” Dp on Vp, an elliptic pseudodifferential operator
of degree 0 with principal symbol

σp(x, ξ) = µ

(〈
M(f(x), p)1/2ξ, (1−M(f(x), p))1/2 X(f(x), p)

‖X(f(x), p)‖

〉)
,

where ξ ∈ Tx(V ) is a unit vector, M is a smooth function on W ×W equal
to 1 on a neighborhood of the diagonal and with support contained in {(p, q) |
d(p, q) < 1}, and µ denotes Clifford multiplication. Dp defines an operator from
L2(Vp, S+) to L2(Vp, S−).

The family (Dp) defines an operator T from E(0) to E(1). If φ is the ac-
tion of C0(V ) on E by multiplication, then

(
E, φ,

[
0
T
T∗

0

])
defines a Kasparov

(C0(V ), C0(W ))-module. The equivalence class of this module is denoted f ! and
read “f shriek”.

If f is a proper map, then f defines a homomorphism from C0(W ) to C0(V )
and hence a Kasparov (C0(W ), C0(V ))-module. In this case, f ! is a sort of
“inverse” to f . If f is not proper, there is no obvious way to construct a Kasparov
(C0(W ), C0(V ))-module.

Shriek maps define a “wrong-way functoriality” (i.e. a covariant functoriality)
from spaces with K-oriented maps to C∗-algebras, in contrast to the ordinary
(contravariant) functoriality from spaces with proper maps to C∗-algebras.

The shriek map construction can be done more generally: if V1, V2 are
smooth manifolds with foliations F1, F2 respectively, and f is a K-oriented
smooth foliation map from (V1, F1) to (V2, F2), then f defines a shriek map
f ! ∈ E(C∗(V1/F1), C∗(V2/F2)).

It is beyond the scope of these notes to give a complete treatment of shriek
maps; the interested reader should see [Connes 1982] for a thorough discussion,
including the foliation case. (See [Moore and Schochet 1988] and [Hilsum and
Skandalis 1987] for further details.)

We will see many more interesting examples later.
There is another way of phrasing the definition of a Kasparov module which

is sometimes useful. If D is a C∗-subalgebra of B(E), set

cD = {T ∈ B(E) | TD ⊆ K(E)},
Dc = {T ∈ B(E) | DT ⊆ K(E)}.
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Then cD is a closed left ideal of B(E), Dc = (cD)∗ is a closed right ideal, and
cDc = cD∩Dc is a hereditary C∗-subalgebra of B(E) containing K(E).

Proposition 17.1.3. Let E be a graded Hilbert B-module, φ : A → B(E) a
graded ∗-homomorphism, and F ∈ B(E) of degree 1. Then the following condi-
tions are equivalent , where D = φ(A):

(1) F 2−1, F −F ∗, [F, φ(A)] are all contained in cD.
(2) F 2−1, F −F ∗, [F, φ(A)] are all contained in Dc.
(3) F 2−1, F −F ∗, [F, φ(A)] are all contained in cDc.
(4) (E, φ, F ) ∈ E(A,B).

Proof. (4) =⇒ (1), (3) =⇒ (1), (3) =⇒ (2) are trivial. To prove that (1) =⇒
(3), note that

φ(a)(F 2−1) = [(F ∗2−1)φ(a∗)]∗

= [(F 2−1)φ(a∗)−F (F −F ∗)φ(a∗)−F ∗(F −F ∗)φ(a∗)]∗;

the other parts are similar.
For (1) =⇒ (4), we need to show that if [F, φ(a)]φ(b) ∈ K(E) for all a, b ∈ A,

then [F, φ(A)] ⊆ K(E). If a and b are homogeneous, then

[F, φ(ab)] = ±φ(a)[F, φ(b)]± [F, φ(a)]φ(b)

= ±([F ∗, φ(b∗)]φ(a∗))∗± [F, φ(a)]φ(b)

= ±([F, φ(b∗)]φ(a∗))∗±([F −F ∗, φ(b∗)]φ(a∗))∗± [F, φ(a)]φ(b) ∈ K(E).

(The signs are chosen according to 14.1.3(b).) Linear combinations of products
of homogeneous elements are dense in A (actually they fill up all of A since every
positive element of A is a product of two elements of A). �

17.2. Equivalence Relations

Definition 17.2.1. Two triples (E0, φ0, F0) and (E1, φ1, F1) are unitarily equiv-
alent if there is a unitary in B(E0, E1), of degree 0, intertwining the φi and Fi.
Unitary equivalence is denoted ≈u.

Definition 17.2.2. A homotopy connecting (E0, φ0, F0) and (E1, φ1, F1) is an
element (E, φ, F ) of E(A, IB) for which (E ⊗̂fi B, fi ◦φ, fi∗(F )) ≈u (Ei, φi, Fi),
where fi, for i = 0, 1, is the evaluation homomorphism from IB to B. Homotopy
respects direct sums. Homotopy equivalence is denoted ∼h. If E0 = E1, a
standard homotopy is a homotopy of the form E = C([0, 1], E0) (which is a
Hilbert IB-module in the obvious way), φ = (φt), F = (Ft), where t → Ft
and t→ φt(a) are strong-∗-operator continuous for each a. This is not the most
general homotopy (although any homotopy can be converted into one in standard
form using the stabilization theorem). It follows immediately from 12.2.2 that if
(ĤB , φ0, F0) ≈u (ĤB , φ1, F1), then (ĤB , φ0, F0) and (ĤB , φ1, F1) are connected
by a standard homotopy. A standard homotopy where in addition φt is constant
and Ft is norm-continuous is called an operator homotopy.
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The next proposition illustrates the very general nature of the equivalence rela-
tion ∼h.

Proposition 17.2.3. If (E, φ, F ) ∈ D(A,B), then (E, φ, F ) is homotopic to the
0-module.

Proof. C0([0, 1), E) is a Hilbert (IB)-module in the obvious way (in the lan-
guage of section 13-14, C0([0, 1)) is a trivially graded Hilbert C([0, 1])-module,
and C0([0, 1), E) is the external tensor product C0([0, 1))⊗̂E), and

(C0([0, 1), E), 1⊗̂φ, 1⊗̂F ) ∈ D(A, IB) ⊆ E(A, IB)

is the desired homotopy. �

There are three natural equivalence relations on E(A,B) in addition to ∼h:

Definition 17.2.4. ∼oh is the equivalence relation on E(A,B) generated by
operator homotopy and addition of degenerate elements, i.e. (E0, φ0, F0) ∼oh
(E1, φ1, F1) if there are (E′i, φ

′
i, F
′
i ) ∈ D(A,B) such that

(E0, φ0, F0)⊕(E′0, φ
′
0, F

′
0) and (E1, φ1, F1)⊕(E′1, φ

′
1, F

′
1)

are operator-homotopic (up to unitary equivalence). ∼cp is the equivalence re-
lation on E(A,B) generated by unitary equivalence, “compact perturbation”
of F , and addition of degenerate elements. (E, φ, F ′) is a “compact pertur-
bation” of (E, φ, F ) if (F−F ′)φ1(a) ∈ K(E) for all a ∈ A. (The quotation
marks reflect the fact that for F ′ to be a “compact perturbation” of F it is
not necessary that F −F ′ itself be in K(E).) ∼c is a “stabilized” version of
∼cp: (E0, φ0, F0) ∼c (E1, φ1, F1) if and only if there are unitarily equivalent
(E′0, ψ0, G0) and (E′1, ψ1, G1) with (E0, φ0, F0)⊕ (E′0, ψ0, G0) ∼cp (E1, φ1, F1)⊕
(E′1, ψ1, G1).

∼c is called “homology” in [Kasparov 1980b, § 7] and “cobordism” in [Cuntz and
Skandalis 1986] (17.10).

We will show later that ∼h, ∼oh, and ∼c all coincide when A is separable and
B is σ-unital.

The next two propositions are good practice exercises in working with the
equivalence relations.

Proposition 17.2.5. Let (E, φ, F ) and (E, φ, F ′) belong to E(A,B), with F ′ a
“compact perturbation” of F . Then (E, φ, F ) and (E, φ, F ′) are operator homo-
topic.

Proof. The straight line segment from F to F ′ is an operator homotopy. �

Corollary 17.2.6. ∼h, ∼oh, and ∼cp are successively stronger equivalence
relations.

Proof. Use 17.2.3 and 17.2.5. �
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For future reference, we need a generalization of 17.2.5. If (E, φ, F ) is a Kasparov
(A,B)-module, then the graded commutator [F, F ] is approximately equal to 2
times the identity (more precisely, φ(a)[F, F ]φ(a)∗ = 2φ(aa∗) mod K(E) for all
a ∈ A). Suppose also (E, φ, F ′) ∈ E(A,B). If φ(a)[F, F ′]φ(a)∗ ≥ 0 mod K(E)
for all a ∈ A, we may regard F and F ′ as being “close”; this condition will be
satisfied, for example, if F ′ is a “compact perturbation” of F or if ‖F −F ′‖ < 1
(or, more generally, if ‖(F −F ′) mod K(E)‖ < 1).

The next proposition, due to Connes and Skandalis, is related in spirit to 4.6.6.
The proof is an easy introduction to some of the techniques used in working with
KK-theory.

Proposition 17.2.7. Let (E, φ, F ) and (E, φ, F ′) be Kasparov (A,B)-modules,
with φ(a)[F, F ′]φ(a)∗ ≥ 0 mod K(E) for all a ∈ A. Then (E, φ, F ) and (E, φ, F ′)
are operator homotopic.

Proof. Set

C = {T ∈ B(E) | [T, φ(a)] ∈ K(E) for all a ∈ A},
J = {T ∈ C | Tφ(a) ∈ K(E) for all a ∈ A}.

Then [F, F ′] ∈ C, and [F, F ′] ≥ 0 mod J . Set [F, F ′] = P +K, where P ∈ C,
P ≥ 0, and K ∈ J , P and K of degree 0. P commutes with F and F ′ mod J

since F 2 = F ′2 = 1 mod J . For 0 ≤ t ≤ π/2, set

Ft = (1+cos t sin t P )−1/2(cos t F +sin t F ′).

We have Ft ∈ C, Ft−F ∗t ∈ J , F 2
t −1 ∈ J . Thus (E, φ, Ft) ∈ E(A,B) for all t,

giving the desired operator homotopy. �

17.3. The KK-Groups

All of the equivalence relations respect direct sums; thus the set of equivalence
classes has an induced binary operation in each case. The operations (also called
direct sum or just sum) are associative and commutative, since each equivalence
relation is weaker than unitary equivalence.

Definition 17.3.1. KK(A,B) = KKh(A,B) is the set of equivalence classes
of E(A,B) under ∼h. KKoh(A,B) (resp. KKcp(A,B), KKc(A,B)) is the set
of equivalence classes of E(A,B) under ∼oh (resp. ∼cp, ∼c). KK1(A,B) =
KK(A, B ⊗̂C1) (14.1.2(b)), and similarly for KK1

oh(A,B), KK1
c (A,B), and

KK1
cp(A,B). More generally, we set KKn(A,B) = KK(A, B ⊗̂Cn) (14.5.6),

and similarly for KKn
oh(A,B), KKn

c (A,B). Note that KK0(A,B) = KK(A,B).
In each case, the set is an abelian semigroup under direct sum.

KKoh(A,B) is denoted K̃K(A,B) in [Skandalis 1984]; KKc(A,B) is denoted
KK(A,B) in [Cuntz and Skandalis 1986].

There are obvious surjective homomorphisms KKcp(A,B)→ KKoh(A,B)→
KK(A,B).
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Remarks 17.3.2. (a) There is a technical problem with the definition of
KK(A,B) if B is not σ-unital: B may not have enough countably generated
Hilbert modules. Kasparov allows the Hilbert B-module ĤB to be used for
E(A,B) whether or not it is countably generated; thus for B not σ-unital our
definition of KK(A,B) (which is taken from [Skandalis 1984]) need not agree
with his.

(b) Kasparov’s definition of KK(A,B) requires dividing by D(A,B) as well as
taking homotopy equivalence classes. But it is unnecessary to divide by D(A,B)
because of 17.2.3.

Proposition 17.3.3. KK(A,B) and KKoh(A,B) are abelian groups; and
KKc(A,B) and KKcp(A,B) are abelian semigroups with identity .

Proof. It is clear that any two degenerate elements are equivalent under ∼cp,
and that the class of degenerate elements forms an identity. It remains to show
the existence of inverses. If (E, φ, F ) ∈ E(A,B), let φ̃ : A→ B(Eop) be defined
by φ̃(a(0) +a(1)) = φ(a(0)−a(1)). Then

(E, φ, F )⊕(Eop, φ̃,−F ) ∼oh
(
E⊕Eop,

[
φ 0
0 φ̃

]
,

[
0 1
1 0

])
via the operator homotopy(

C([0, 1], E⊕Eop),
[
φ 0
0 φ̃

]
,

[
F cos t sin t
sin t −F cos t

])
. �

KKc(A,B) is also a group if A is separable, a fact which is difficult to prove
directly but which follows immediately from the fact that ∼oh and ∼c coincide.
We defer the proof until 17.10.

It turns out that KKcp(A,B) does not have cancellation in general. There is a
natural surjective homomorphism from KKc(A,B) to the cancellation semigroup
of KKcp(A,B); since KKoh(A,B) is a group, there is an induced surjective
homomorphism fromKKc(A,B) toKKoh(A,B) (i.e.∼c is a stronger equivalence
relation than ∼oh).

The reader should try to avoid being confused by this multitude of equivalence
relations and groups, since they all coincide (at least in the cases of interest).
It is useful in relating the Kasparov groups to K-groups and Ext-groups, and
also for some applications, to have the equivalence relation expressed in different
forms. The agreement of the different relations (especially the agreement of ∼h
and ∼oh) is quite a deep result. The philosophical point of view to take is that
the definition of the Kasparov groups is not very sensitive to the equivalence
relation used: ∼c is the strongest “reasonable” relation (for which there is hope
of obtaining a group), and ∼h the weakest “reasonable” one.

Example 17.3.4. We analyze these groups in detail for A = B = C. An element
of E(C,C) is a module of the form α = (H, φ, F ), where H is a graded Hilbert
space (of finite or countably infinite dimension). We may write H as H0⊕Hop

1 ,
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where H0 and H1 are trivially graded. Then φ(1) is a projection of degree 0,
i.e. φ(1) = diag(P,Q) for projections P and Q; and F is of the form

[
0
T
S
0

]
since F is of degree 1. The conditions that (H, φ, F ) be a Kasparov module are
that (ST −1)P , (TS−1)Q, (S−T ∗)P , (T −S∗)Q, PS−SQ, TP −QT are all
compact; the module is degenerate if all are 0.
α is a “compact perturbation” of the module (H, φ, φ(1)Fφ(1)); i.e.

α ∼cp
(

H0⊕Hop
1 ,

[
P 0
0 Q

]
,

[
0 PSQ

QTP 0

])
≈u
(
PH0⊕QHop

1 ,

[
P 0
0 Q

]
,

[
0 PSQ

QTP 0

])
⊕
(
(1−P )H0⊕(1−Q)Hop

1 , 0, 0
)

∼cp
(
PH0⊕QHop

1 ,

[
P 0
0 Q

]
,

[
0 PSQ

QTP 0

])
,

since ((1−P )H0⊕ (1−Q)Hop
1 , 0, 0) ∈ D(C,C). Thus the equivalence class of α

in KKcp(C,C) can be represented by a module of the form

β =
(

H̃0⊕H̃
op

1 , 1,
[

0 S̃

T̃ 0

])
(i.e. with φ unital). For such a module, T̃ is essentially a unitary operator from
H̃0 to H̃1, and S̃ is essentially T̃ ∗. By performing another “compact perturba-
tion”, we may assume T̃ is either an isometry or coisometry, and that S̃ = T̃ ∗.
If T̃ is unitary, then β is degenerate. If T̃ is a proper coisometry (i.e. T̃ T̃ ∗ = 1,
T̃ ∗T̃ 6= 1), set P̃ = 1− T̃ ∗T̃ ; then P̃ is a projection in B(H̃0) of finite rank n,
and β is unitarily equivalent to

(P̃ H̃0, 1, 0)⊕
(

(1− P̃ )H̃0⊕H̃
op

1 , 1,
[

0 T̃ ∗

T̃ 0

])
.

The second module is degenerate, and the first module is isomorphic to n times
the module obtained from the identity map C → C as in 17.1.2(a) (or, equiva-
lently, the first module is isomorphic to the module coming from the unital map
C →Mn). Similarly, if T̃ is a proper isometry, set Q̃ = 1− T̃ T̃ ∗ ∈ B(H̃1). Then
β is unitarily equivalent to

(Q̃H̃
op

1 , 1, 0)⊕
(

H̃0⊕(1−Q̃)H̃
op

1 , 1,
[

0 T̃ ∗

T̃ 0

])
,

which is ∼cp-equivalent to the negative of a homomorphism. Thus the map
Z → KKcp(C,C) sending 1 to the class of 1C is surjective, i.e. KKcp(A,B) is a
cyclic group generated by [1C ].

There is an inverse map from KKoh(C,C) to Z defined by sending the original
module

(
H0⊕Hop

1 ,
[
P
0

0
Q

]
,
[

0
T
S
0

])
to the Fredholm index of QTP (this makes

sense as (dimPH0−dimQH1) if PH0 and QH1 are finite-dimensional). This
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map is well defined because an operator homotopy must preserve this index. The
map is obviously surjective. Thus we get a sequence of surjective maps

Z → KKcp(C,C)→ KKc(C,C)→ KKoh(C,C)→ Z

whose composition is the identity map, so all the maps are isomorphisms.
It is more difficult to analyze KK(C,C) because of the very general nature

of ∼h; but we will see later that KK(C,C) is also Z.

17.4. Standard Simplifications

We now discuss some simplifications in the definition.

Proposition 17.4.1. If B is σ-unital , then in the definition of KKc(A,B)
(hence also for KKoh(A,B) and KK(A,B)) it suffices to consider only those
triples (E, φ, F ) where E = ĤB .

Proof. The triple (ĤB , 0, 0) is in D(A,B), so (E, φ, F ) has the same image in
KKc(A,B) as (E⊕ĤB , φ⊕0, F⊕0). We have E⊕ĤB

∼= ĤB by the stabilization
theorem (14.6.1). �

Proposition 17.4.2. If (E, φ, F ) ∈ E(A,B), then there is a “compact pertur-
bation” (E, φ,G) of (E, φ, F ) with G = G∗. So in the definition of KKc(A,B)
(hence also for KKoh(A,B) and KK(A,B)), it suffices to consider only those
triples (E, φ, F ) where F = F ∗, and “compact perturbations”, homotopies, and
operator homotopies may be taken within this class.

Proof. If (E, φ, F ) ∈ E(A,B), then so are (E, φ, F ∗) and (E, φ, (F +F ∗)/2),
which are “compact perturbations” of (E, φ, F ). The same procedure may be
applied to a homotopy [resp. operator homotopy] (Et, φt, Ft) from (E0, φ0, F0) to
(E1, φ1, F1) to yield a homotopy [resp. operator homotopy] (Et, φt, (Ft+F ∗t )/2)
from (E0, φ0, (F0 +F ∗0 )/2) to (E1, φ1, (F1 +F ∗1 )/2). �

Proposition 17.4.3. If (E, φ, F ) ∈ E(A,B), then there is a “compact pertur-
bation” (E, φ,G) of (E, φ, F ) with G = G∗, ‖G‖ ≤ 1. If A is unital , we may
in addition obtain a G with G2−1 ∈ K(E). So in the definition of KKc(A,B)
(hence also for KKoh(A,B) and KK(A,B)), it suffices to consider only those
triples where F = F ∗, ‖F‖ ≤1. If A is unital , we may in addition assume
F 2−1 ∈ K(E). “Compact perturbations”, homotopies, and operator homotopies
may be taken to lie within this class.

Proof. Let (E, φ, F ) ∈ E(A,B). We may assume F = F ∗ by 17.4.2. Let
g be the continuous function on R with g(x) = −1 for x ≤ −1, g(x) = x for
−1 ≤ x ≤ 1, and g(x) = 1 for x ≥ 1. Set G = g(F ). Then (E, φ,G) ∈ E(A,B),
and is a “compact perturbation” of (E, φ, F ). If A is unital, let P = φ(1), and
replace G by PGP+(1−P ). The same procedures may be applied to a Kasparov
module for (A, IB) implementing a homotopy or operator homotopy to yield a
homotopy or operator homotopy between the perturbed modules. �
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Actually, we can require F 2−1 ∈ K(E) even if A is nonunital (17.6).
The simplifications of the three preceding propositions may be done indepen-

dently and simultaneously. We will usually make these simplifications, sometimes
without comment. They were not built into the definition since in some appli-
cations of Kasparov theory (e.g. 17.1.2(e)) elements of E(A,B) arise naturally
which are not of the special form.

There are two other simplifications which can be made in addition to 17.4.1-
17.4.3. These additional simplifications cannot be made simultaneously. A choice
of one or the other leads to the two standard pictures of KK(A,B).

17.5. Fredholm Picture of KK(A,B)

Suppose A is unital. Then in the definition of KKc(A,B) (hence also of
KKoh(A,B) and KK(A,B)) it suffices to consider only those triples (E, φ, F )
with φ unital [apply 17.4.3 and replace E by PE and F by PFP .] If B is
σ-unital and there is a unital (graded) homomorphism from A to B(ĤB) (in
particular, if A has a nonzero representation on a separable Hilbert space), we
may in addition restrict to the case E = ĤB (with φ unital). Again, “compact
perturbations”, homotopies, or operator homotopies may always be chosen to lie
within this class.

If A is only σ-unital, in the definition of KK(A,B) we may still restrict to
triples (E, φ, F ) where φ is essential. However, the proof is much more compli-
cated, and will be deferred until 18.3.6.

17.5.1. We examine in more detail the case where A is unital and trivially
graded and B is σ-unital and trivially graded. We may identify B(ĤB) with
M2(Ms(B)), with the diagonal-off diagonal grading as in 14.1.2(a). With this
identification, φ = diag(φ0, φ1), where φi is a unital homomorphism from A to
Ms(B), and

F =
[

0 T ∗

T 0

]
,

for some T ∈ Ms(B) with ‖T‖ ≤1. The intertwining conditions for F and
φ become T ∗T − 1, TT ∗ − 1, Tφ1(a)− φ0(a)T ∈ B ⊗K for all a ∈ A. The
equivalence relation ∼h is homotopy of triples (φ0, φ1, T ) (with strong-operator
continuity); ∼oh [resp. ∼c] is generated by unitary equivalence, norm-homotopy
[resp. compact perturbation] of T , and adding on degenerate triples (where T is
a unitary exactly intertwining φ0 and φ1).

A Kasparov module in the Fredholm picture is often denoted by a triple
(E(0) ⊕E(1), φ(0) ⊕ φ(1), T ), where T ∈ B(E(0), E(1)) is an operator with the
right algebraic and intertwining properties as above. Modules expressed in this
way give the Fredholm picture of KK(A,B).

17.5.2. Under the same assumptions on A and B, we get a similar description of
KK1(A,B). Now B(ĤB ⊗̂C1) ∼= Ms(B)⊗̂C1

∼= Ms(B)⊕Ms(B) with standard
odd grading. φ is of the form ψ⊕ψ, and F = T ⊕(−T ) for some unital ψ : A→
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Ms(B) and T ∈ Ms(B) with T = T ∗, ‖T‖ ≤ 1. The commutation relations
become T 2−1 and Tψ(a)−ψ(a)T ∈ B⊗K for all a. The degenerate pairs (φ, T )
have T a self-adjoint unitary commuting with ψ(A).

So the Fredholm picture of modules for KK1(A,B), for A, B trivially graded,
is as triples (E,ψ, T ), where E is a (trivially graded) Hilbert B-module, ψ is
a unital ∗-homomorphism from A to B(E), and T is a self-adjoint, essentially
unitary operator on E essentially commuting with ψ(A). (Sometimes it is con-
venient to only require T to be essentially self-adjoint in this picture.)

17.5.3. If A is not unital, we can still use the Fredholm picture for Kasparov
(A,B)-modules; in the descriptions of the previous two paragraphs, we must
replace the commutation conditions by (T ∗T − 1)φ1(a) and (TT ∗− 1)φ2(a) ∈
B ⊗K for KK(A,B), and similarly for KK1. We can actually arrange for
T ∗T −1, TT ∗−1 and (for KK1) T −T ∗ to be compact (or even 0) by 17.6; but
Kasparov modules often arise naturally expressed in the Fredholm picture form
which do not have such strong properties.

17.5.4. A particularly simple and important case is when A = C. Since there
is only one unital homomorphism from C to Ms(B), the φ can be eliminated
entirely in this case. Thus the descriptions of KK(C, B) and KK1(C, B) become

KK(C, B) ∼= {[T ] : T ∈Ms(B), T ∗T −1, TT ∗−1 ∈ B⊗K},
KK1(C, B) ∼= {[T ] : T ∈Ms(B), T = T ∗, T 2−1 ∈ B⊗K}.

The elements of E(C, B) are thus (up to equivalence) just the preimages of
unitaries in Qs(B). The equivalence relation in KKoh(C, B) is homotopy and
orthogonal composition with degenerate elements (unitaries in Ms(B)). Since
any homotopy in Qs(B) can be lifted to a homotopy in Ms(B) (3.4.6), we have
proved:

Proposition 17.5.5. If B is a trivially graded σ-unital C∗-algebra, then

KKoh(C, B) ∼= K1(Qs(B)) ∼= K0(B).

Similarly, the elements of KK1
oh(C, B) can be identified with self-adjoint ele-

ments in Ms(B) with unitary image in Qs(B). These in turn may be identified
with projections in Qs(B), so that

Proposition 17.5.6. If B is a trivially graded σ-unital C∗-algebra, then

KK1
oh(C, B) ∼= K0(Qs(B)) ∼= K1(B).

Note that the identification of K0(Qs(B)) with K1(B) requires Bott periodicity
of K-theory, as well as the triviality of K∗(Ms(B)), so the identification of
KK1

oh(C, B) with K1(B) requires K-theory Bott periodicity. The identification
of KKoh(C, B) with K0(B) does not require K-theory Bott periodicity, only
triviality of K∗(Ms(B)) and exactness of the connecting map ∂ of 8.3. The
identification of KKi

oh(C, B) with K1−i(Qs(B)) is elementary in both cases.
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There is another related identification. Any ∗-homomorphism ψ from C0((0,1))
into a unital C∗-algebra defines a unitary ψ(f) + 1, where f(t) = e2πit − 1,
and conversely any unitary u defines a homomorphism by sending f to u− 1.
Two homomorphisms are homotopic if and only if the corresponding unitaries
are in the same connected component. Thus elements of KK1(C0(R), B)(B
trivially graded) are represented by triples (HB , U, T ), where U is a unitary in
BB ∼= Ms(B) and T is a self-adjoint, essentially unitary operator in Ms(B)
essentially commuting with U . If we set P = (T + 1)/2, then P is essentially
a projection. Set ω(U,P ) = π(PUP + 1− P ), where π is the quotient map
from Ms(B) to Qs(B). Then ω(U,P ) is a unitary in Qs(B), and ω(U,P ) and
ω(V,Q) are in the same component if and only if (U,P ) and (V,Q) are operator
homotopic. (U,P ) is degenerate if P is an actual projection exactly commuting
with U . If u is a unitary in Qs(B), let U be a lift of diag(u, u−1) in M2(Ms(B));
then (U,diag(1, 0)) has diag(u, 1) as image; so we have proved

Proposition 17.5.7. If B is a trivially graded σ-unital C∗-algebra, then

KK1
oh(C0(R), B) ∼= K1(Qs(B)) ∼= K0(B).

The idea behind the Fredholm Picture is to push as much of the nontrivial infor-
mation of a triple as possible into the operator F . This can be done completely,
however, only in the case A = C. The Fredholm Picture represents KK-elements
as “generalized elliptic operators” (cf. 17.1.2(e)).

17.6. Quasihomomorphism or Cuntz Picture of KK(A,B)

In this picture, we put all the nontrivial information of a triple into the homo-
morphism φ; KK-elements will be represented as “generalized homomorphisms.”
We will assume throughout that B is σ-unital.

Let (E, φ, F ) ∈ E(A,B), with F = F ∗ and ‖F‖ ≤ 1, as in 17.4.3. Then
(Eop, 0,−F ) ∈ D(A,B), and

(
E⊕Eop, φ⊕0, F ⊕ (−F )

)
is a “compact pertur-

bation” of (E⊕E, φ⊕0, G), where

G =
[

F (1−F 2)1/2

(1−F 2)1/2 −F

]
.

G is a self-adjoint unitary. Thus we need only consider triples where F = F ∗ =
F−1. Again, homotopies or operator homotopies may be taken to stay within
this class.

17.6.1. We may further simplify the module (E, φ, F ), where F = F ∗ = F−1,
by adding on the degenerate element (Eop, 0,−F ) to obtain (E⊕Eop, φ⊕0, F ⊕
(−F )). This is unitarily equivalent to

(
E⊕Eop, (adU)◦ (φ⊕0),

[
0
1

1
0

])
, where

U = 1√
2

[
1
F
−F

1

]
. (Note that U is a unitary of degree 0.) So every KKc-

equivalence class can be represented by a module of the form
(
E⊕Eop, ψ,

[
0
1

1
0

])
for a suitable graded Hilbert B-module E. Thus we may eliminate the F entirely.
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By adding on the degenerate module (HB ⊕Hop
B , 0,

[
0
1

1
0

])
, and using the

Stabilization Theorem (14.6.1), we may represent any KKc-element by a module
of the form

(
HB⊕Hop

B , φ,
[

0
1

1
0

])
, where HB has its natural grading.

17.6.2. If B is trivially graded, we have

φ =
[
φ00 φ01

φ10 φ11

]
,

where φ00(a)−φ11(a) and φ10(a)+φ01(a) are in B ⊗̂K for all a ∈ A.
If A is also trivially graded, then φ10 = φ01 = 0, and φ(0) = φ00 and φ(1) = φ11

are homomorphisms from A to Ms(B). So

KK(A,B) = {[φ(0), φ(1)] | φ(i) : A→Ms(B), φ(0)(a)−φ(1)(a) ∈ B⊗K for all a}.

Thus, if A and B are trivially graded, the elements of KK(A,B), etc., may be
taken to be equivalence classes of quasihomomorphisms from A to B⊗K: pairs
(φ(0), φ(1)) of homomorphisms into Ms(B) which agree mod B⊗K. Degenerate
elements are quasihomomorphisms with φ(0) = φ(1).

More generally, a prequasihomomorphism from A to B is a triple (φ(0), φ(1), µ),
where φ(i) are homomorphisms from A to a C∗-algebra D containing an ideal J ,
such that φ(0)(a)−φ(1)(a) ∈ J for all a ∈ A, and µ is a homomorphism from J

to B. The prequasihomomorphism is a quasihomomorphism if J is essential in
D and µ is an embedding (sometimes it is also assumed that D is generated by
φ(0)(A) and φ(1)(A) and that J is generated by (φ(0)−φ(1))(A)). It is easy to see
that quasihomomorphisms in this sense exactly correspond to homomorphisms
from qA (10.11.13) to B.

Any prequasihomomorphism from A to B defines an element of E(A,B) by
setting E = J⊗µB with trivial grading; there is then a canonical homomorphism
ψ : D → M(J) = B(J) → B(E). Then

(
E⊕Eop, ψ ◦φ(0)⊕ψ ◦φ(1),

[
0
1

1
0

])
∈

E(A,B).

17.6.3. The equivalence relations (except ∼oh) are easy to describe in the setting
where A and B are trivially graded. Unitary equivalence corresponds to conju-
gating φ0 and φ1 by the same unitary, and compact perturbation corresponds to
conjugating φ1 by a unitary which is a compact perturbation of the identity. Ho-
motopy can be cleanly described as follows. Suppose [φ(0)

0 , φ
(1)
0 ] ∼h [φ(0)

1 , φ
(1)
1 ] via

an element of E(A, IB). The procedure of 17.6.1 can be applied to this homotopy
module to convert it into a module of the form

(
HIB⊕Hop

IB, ψ
(0)⊕ψ(1),

[
0
1

1
0

])
,

i.e. a quasihomomorphism from A to IB. This quasihomomorphism gives a
homotopy from [φ(0)

0 , φ
(1)
0 ]⊕ (degenerate) to [φ(0)

1 , φ
(1)
1 ]⊕ (degenerate). Thus

∼h is the equivalence relation generated by addition of degenerates and ho-
motopies given by paths (φ(0)

t ), (φ(1)
t ), strictly continuous in t for each a, such

that (φ(0)
t , φ

(1)
t ) is a quasihomomorphism for each t. Thus KK(A,B) can be

identified with [qA, B⊗K] (9.4.4, 10.11.13).
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17.6.4. Now let us examine the Cuntz picture of KK1, again assuming A and B
are trivially graded. As in the Fredholm picture, B(ĤB ⊗̂C1) ∼= Ms(B)⊕Ms(B)
with the standard odd grading. φ is of the form ψ⊕ψ and F = T⊕(−T ), where
now T is a self-adjoint unitary almost commuting with ψ. If P = 2T −1, then
P is a projection almost commuting with ψ. Thus we may write

KK1(A,B) =
{

[(ψ, P )] | ψ : A→Ms(B), P = P ∗ = P 2 ∈Ms(B),

Pψ(a)−ψ(a)P ∈ B⊗K for all a ∈ A
}
.

We will sometimes use this picture also allowing P to be a projection mod B⊗̂K
instead of an honest projection in Ms(B).

Using the stabilization theorem, we may assume that ψ : A → M2(Ms(B)),
P = diag(1, 0). Expressed differently, every element of KK1

c (A,B) can be rep-
resented by a module of the form

(
(HB ⊕HB) ⊗̂C1, ψ ⊗̂ 1,

[
1
0

0
−1

]
⊗̂ ε
)

(cf.
17.1.2(d)).

The equivalence relations are describable as before. Unitary equivalence has
the obvious meaning. “Compact perturbation” means replacing P by P ′, where
(P −P ′)ψ(a) ∈ B⊗K for all a. A homotopy is an element of E(A, IB), which
can be described as a pair (ψ, P ) in the same manner. An operator homotopy
corresponds to a path (Pt); by the unitary version of 4.3.3 we can find a path
(Ut) of unitaries with UtPtU

∗
t = P0, and we can use the path Ut to transfer the

operator homotopy to a homotopy (ψt, P0), where ψt = U∗t ψUt. Thus ∼oh is
the equivalence relation generated by this type of homotopy, along with unitary
equivalence and addition of degenerate elements. A degenerate element is a pair
(ψ, P ) where P commutes with ψ(A).

Each pair (ψ, P ) defines an extension τ by τ(a) = π(Pψ(a)P ), where π :
Ms(A) → Qs(A) is the quotient map. The relation ∼c is exactly the same as
the defining relation for Ext(A,B), so we obtain an injective homomorphism
from KK1

c (A,B) to Ext(A,B). The range consists of invertible extensions, since
the pair (ψ, 1−P ) defines an inverse for (ψ, P ) in Ext(A,B). The argument of
15.7.2 shows that every invertible extension occurs in this manner, and describes
the inverse map Ext(A,B)−1 → KK1

c (A,B). So we have proved:

Proposition 17.6.5. Let A and B be trivially graded , with B σ-unital . Then
KK1

c (A,B) ∼= Ext(A,B)−1. If A is separable and nuclear , then KK1
c (A,B) ∼=

Ext(A,B).

17.6.6. If A and B (with B σ-unital) are not trivially graded, there is still
a homomorphism from Ext(A,B)−1, the group of invertible grading-preserving
extensions of A by B ⊗̂K (15.13), to KK1(A,B), defined in the same way as
in 15.7.2. However, this map is not an isomorphism in general. For example,
Ext(C,C1) is trivial, but KK1(C,C1) ∼= Z.
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17.7. Additivity

It follows immediately from the constructions of 17.1.2 thatKK(A1⊕A2, B) ∼=
KK(A1, B)⊕KK(A2, B) and KK(A,B1⊕B2) ∼= KK(A,B1)⊕KK(A,B2) under
the obvious maps. The same is true for KKc and KKoh.

Additivity in the first variable also holds for countable direct sums (19.7); the
proof requires the equality of ∼h and ∼oh. KK is not countably additive in the
second variable in general; but it is for certain special A.

17.8. Functoriality

If f : A1 → A2 is a graded homomorphism, then for any B there is an induced
map E(A2, B)→ E(A1, B) given by (E, φ, F )→ (E, φ◦f, F ). This map respects
direct sums and all three equivalence relations, and so defines homomorphisms
f∗ : KK(A2, B)→ KK(A1, B), etc. Thus, for fixed B, KK( · , B), KKoh( · , B),
and KKc( · , B) are contravariant functors from C∗-algebras to abelian groups.

If g : B1 → B2 is a graded homomorphism, then for any A there is a map
E(A,B1) → E(A,B2) given by (E, φ, F ) → (E ⊗̂gB2, φ ⊗̂1, F ⊗̂1). This map
also respects direct sums and all three equivalence relations, and so defines ho-
momorphisms g∗ : KK(A,B1)→ KK(A,B2), etc. Thus, for fixed A, KK(A, · ),
KKoh(A, · ), and KKc(A, · ) are covariant functors from C∗-algebras to abelian
groups.

Combining the previous paragraphs, KK, KKoh, and KKc are bifunctors
from pairs of C∗-algebras to abelian groups, contravariant in the first variable
and covariant in the second.

Definition 17.8.1. Let f : A→ B ⊗̂K be a graded ∗-homomorphism. Denote
the element of KK(A,B) (or KKc, or KKoh) corresponding to f as in 17.1.2(a)
by f .

Examples 17.8.2. (a) If f : A → B is a graded homomorphism, then f ∈
KK(A,B) is represented by (B, f, 0). Let E be the graded Hilbert (IB)-sub-
module {h : [0, 1]→ B | h(1) ∈ f(A)B} of C([0, 1], B); then (E, 1⊗f, 0) gives a
homotopy between (B, f, 0) and (f(A)B, f, 0), so (f(A)B, f, 0) also represents f

in KK(A,B). It is not clear at this point that this module also represents f in
KKoh(A,B) unless f is essential in the sense that f(A) generates B as a closed
right ideal.

(b) If f : A → D and g : D → B are graded homomorphisms, then f∗(g)
and g ◦f are both represented by (B, g ◦ f, 0) ∈ E(A,B), so f∗(g) = g ◦f in
KKc(A,B). g∗(f) is represented by (g(D)B, g ◦ f, 0) ∈ E(A,B), so g∗(f) =
f∗(g) = g ◦f in KK(A,B). If g is essential, then also g∗(f) = f∗(g) = g ◦f in
KKc(A,B).

(c) Let i : A⊗̂K → A⊗̂K be the identity map, and i the corresponding element
of KKc(A ⊗̂K, A). Let h : A → A ⊗̂K send a to a ⊗̂ p for a one-dimensional
projection p of degree 0. Then h∗(i) = 1A and h∗(i) = 1A⊗̂K . (Standard
representatives give the modules of 17.2.1(a) plus degenerate modules.)
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(d) Let

0 - B
j
- D �

s

q
- A - 0

be a split exact sequence of graded C∗-algebras, and let πs be the element of
KK(D,B) defined by the Kasparov module of 17.1.2(b). Then j∗(πs) = 1B . It
is not true in general that j∗(πs) = 1D.

(e) In the situation of (d), j⊕ s gives a graded homomorphism from B⊕A to
D⊕D ⊆ M2(D). We will show later (19.9.1) that the corresponding element
j⊕s of KK(B⊕A,D) is invertible. (The inverse is basically πs⊕q.)

If we regard a homomorphism f : A → B as the element f ∈ KK(A,B), then
the functoriality of KK may be regarded as a statement that an element of
KK(A,D) may be composed with an element of KK(D,B) to yield an element
of KK(A,B), provided that one of the elements comes from an actual homo-
morphism. The intersection product extends this law of composition to arbitrary
KK-elements, preserving associativity.

It is an interesting fact that any quasihomomorphism can be canonically fac-
tored into an ordinary homomorphism and a splitting morphism; so in the triv-
ially graded case any KK-element can be expressed in terms of an ordinary
homomorphism and a splitting morphism.

Proposition 17.8.3. Let [φ(0), φ(1)] be a quasihomomorphism from A to B.
Then there is a canonically associated split exact sequence

0 - B⊗K
j
- D �

s

q
- A - 0

and a ∗-homomorphism f : A→ D such that [φ(0), φ(1)] = f∗(πs). D is separable
if A and B are separable.

Proof. The φ(i) are homomorphisms from A to Ms(B) which agree mod B⊗̂K.
Let D = {(a, φ(0)(a) + b) | a ∈ A, b ∈ B ⊗̂K} ⊆ A⊕Ms(B). (The same
algebra is obtained by considering pairs (a, φ(1)(a) + b).) D contains an ideal
{(0, b) | b ∈ B ⊗̂K} isomorphic to B ⊗̂K; the quotient is isomorphic to A via
projection q onto the first coordinate. s : A → D defined by s(a) = (a, φ(1)(a))
is a cross section. Let f : A → D be defined by f(a) = (a, φ(0)(a)); then it is
easily checked that f∗(πs) = [φ(0), φ(1)]. �

Corollary 17.8.4. Let A and B be trivially graded C∗-algebras, and x ∈
KK(A,B). Then there is a split extension D of B and a ∗-homomorphism f :
A→ D such that x = f∗(πs), where πs ∈ KK(D,B) is the splitting morphism.
If A and B are separable we may assume D is separable.

17.8.5. There is another related functorial construction. If A,B,D are C∗-
algebras, there is a map from E(A,B) to E(A⊗̂D, B ⊗̂D) given by (E, φ, F )→
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(E ⊗̂D, φ⊗̂1, F ⊗̂1). Again, this map respects direct sums and the equivalence
relation and so induces homomorphisms τD : KK(A,B) → KK(A ⊗̂D,B ⊗̂D),
etc. The homomorphism τD is natural in each variable.

Combining this construction with the previous ones, if h : D1 → D2, we can
define ⊗̂h = (1⊗̂h)∗ ◦τD1 : KK(A,B)→ KK(A⊗̂D1, B ⊗̂D2).

One must be slightly careful with functoriality here. If h : D1 → D2 is
essential, then for any Hilbert B-module E we may identify (E ⊗̂D1) ⊗̂1⊗̂h
(B ⊗̂D2) with E ⊗̂D2, and then we have the obvious equality (1 ⊗̂h)∗ ◦ τD1 =
(1 ⊗̂ h)∗ ◦ τD2 . So this functoriality holds in KKoh for essential maps. The
difficulty is similar to the one in 17.8.2(b).

Proposition 17.8.6. For any homomorphism h : D1 → D2, we have (1⊗̂h)∗ ◦
τD1 = (1⊗̂h)∗ ◦τD2 in KK(A⊗̂D1, B ⊗̂D2).

Proof. Let (E, φ, F ) ∈ E(A,B), and set J = D1 ⊗̂hD2; then J is the closed
right ideal of D2 generated by h(D1). Then (1 ⊗̂h)∗ ◦ τD1(E, φ, F ) = (E ⊗̂C J,

φ⊗̂h, F ⊗̂1) and (1⊗̂h)∗◦τD2(E, φ, F ) = (E ⊗̂CD2, φ⊗̂h, F ⊗̂1); we must show
that these modules are homotopic. Let Ẽ = {f : [0, 1]→ D2 | f(1) ∈ J}; then Ẽ
is a Hilbert D2-module in the obvious way. Let h̃ be the action of D1 on Ẽ given
by multiplication by constant functions (via h). Then (E ⊗̂C Ẽ, φ ⊗̂ h̃, F ⊗̂ 1)
gives the desired homotopy. �

Proposition 17.8.7. For any A and B, τK : KK(A,B)→ KK(A⊗̂K, B ⊗̂K)
is an isomorphism, and similarly for KKoh and KKc. (K has standard even
grading .)

Proof. The inverse map sends the module (E, φ, F ) ∈ E(A ⊗̂K, B ⊗̂K) to
(E ⊗̂iHB , φ ◦h, F ⊗̂ 1), where i : B ⊗̂K → B(HB) ∼= M(B ⊗̂K) and h : A →
A ⊗̂K are as in 17.8.2(b). It is routine to verify that this map has the required
properties. �

Corollary 17.8.8. For any A and B, and for any m and n, there are natural
isomorphisms

KK(A,B) ∼= KK(A⊗̂Mn, B ⊗̂Mm) ∼= KK(A⊗̂K, B) ∼= KK(A,B ⊗̂K)
∼= KK(A⊗̂K, B ⊗̂K).

The same holds for KKoh and KKc. Mn and K can have any (even) grading ,
including the trivial grading . So we have natural isomorphisms KKn(A,B) ∼=
KKn+2(A,B) for all n and for all A, B.

Corollary 17.8.9 (Formal Bott Periodicity). For any A and B the map
τC1 : KK(A,B) → KK(A ⊗̂C1, B ⊗̂C1) is an isomorphism, and similarly for
KKoh and KKc. So for any A and B there are natural isomorphisms

KK1(A,B) ∼= KK(A⊗̂C1, B)
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and

KK(A,B) ∼= KK1(A,B ⊗̂C1) ∼= KK1(A⊗̂C1, B) ∼= KK(A⊗̂C1, B ⊗̂C1),

and similarly for KKoh, KKc.

Proof. Use 17.7.2 and 14.5.5 to conclude that τC1◦τC1 = τM2 is an isomorphism.
Then τC1 has τ−1

M2
◦τC1 as inverse. �

We will use Formal Bott Periodicity to prove usual Bott Periodicity in Section
19. We need the intersection product first.

17.9. Homotopy Invariance

We can use the functoriality of 17.8 to prove that KK is homotopy-invariant
in each variable.

Proposition 17.9.1. (a) Let g0, g1 : D → B be homotopic homomorphisms.
Then, for any A, g0∗ = g1∗ : KK(A,D)→ KK(A,B).

(b) Let f0, f1 : A → D be homotopic homomorphisms. Then, for any B, f∗0 =
f∗1 : KK(D,B)→ KK(A,B).

Proof. (a) Let g : D → IB be a homotopy between g0 and g1. Then, if
(E, φ, F ) ∈ E(A,D), the map g∗(E, φ, F ) ∈ E(A, IB) gives a homotopy between
g0∗(E, φ, F ) and g1∗(E, φ, F ).

(b) Let f : A→ ID be a homotopy between f0 and f1. If (E, φ, F ) ∈ E(D,B),
then f∗(τC([0,1])(E, φ, F )) ∈ E(A, IB) gives a homotopy between f∗0 (E, φ, F ) and
f∗1 (E, φ, F ). �

Homotopy invariance of KKoh and KKc is much more delicate (it is in effect the
statement that ∼oh and ∼c coincide with ∼h), and cannot be shown without the
intersection product (see 18.5.3).

17.10. Cobordism and Isomorphism of KKoh and KKc

We now prove that the natural map from KKc(A,B) to KKoh(A,B) is an
isomorphism (i.e. that ∼c and ∼oh coincide) when A is separable. The proof
does not require use of the intersection product, although it does require one
(easy) application of Kasparov’s Technical Theorem (in 17.10.5).

The proof entails another interesting notion, cobordism. The notion of cobor-
dism in Kasparov theory is due to Cuntz and Skandalis [1986].

Definition 17.10.1. Let (E, φ, F ) ∈ E(A,B), and p a projection in B(E),
of degree 0, commuting with φ(A). Then (E, φ, F )p is the Kasparov module
(pE, ψ, pFp), where ψ(a) = pφ(a) = pφ(a)p.

Definition 17.10.2. Two elements (E0, φ0, F0) and (E1, φ1, F1) of E(A,B) are
cobordant if there is an (E, φ, F ) ∈ E(A,B) and a partial isometry v ∈ B(E) of
degree 0, commuting with φ(A), such that

(i) [v, F ]φ(a) ∈ K(E) for all a,
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(ii) (E, φ, F )1−vv∗ is unitarily equivalent to (E0, φ0, F0), and
(iii) (E, φ, F )1−v∗v is unitarily equivalent to (E1, φ1, F1).

The module (E, φ, F, v) may be regarded as a “Kasparov module with boundary
(E, φ, F )1−vv∗ − (E, φ, F )1−v∗v.” The term “cobordism” is in analogy with a
similar use in topology.

Proposition 17.10.3. Cobordism is an equivalence relation compatible with
direct sums.

Proof. Everything is obvious except transitivity. Suppose that (E′, φ′, F ′, v′)
and (E′′, φ′′, F ′′, v′′) are Kasparov modules with boundary, and that

u ∈ B
(
(1−v′∗v′)E′, (1−v′′v′′∗)E′′

)
gives a unitary equivalence between (E′, φ′, F ′)1−v′∗v′ and (E′′, φ′′, F ′′)1−v′′v′′∗ .
Let v = (v′⊕ v′′) +u ∈ B(E′⊕E′′). Then (E′⊕E′′, φ′⊕φ′′, F ′⊕F ′′, v′⊕ v′′)
gives a cobordism between (E′, φ′, F ′)1−v′v′∗ and (E′′, φ′′, F ′′)1−v′′∗v′′ . �

Proposition 17.10.4. Cobordism is exactly the equivalence relation ∼c.

Proof. Unitarily equivalent modules are cobordant (with v = 0). If (E, φ, F )
is degenerate, let v be an isometry of degree −1 on a separable Hilbert space
H; then (H ⊗̂E, 1⊗ φ, 1⊗F, v⊗ 1) gives a cobordism between (E, φ, F ) and
the 0-module. If (E, φ, F ) ∈ E(A,B) and F ′ is a “compact perturbation” of
F , then

(
E ⊕E, φ⊕ φ, F ⊕ F ′,

[
0
1

0
0

])
defines a cobordism between (E, φ, F )

and (E, φ, F ′). So ∼c implies cobordism. Conversely, let (E, φ, F, v) define
a cobordism between (E0, φ0, F0) and (E1, φ1, F1). Then (E, φ, F ) is a “com-
pact perturbation” of (E, φ, F )vv∗ ⊕ (E, φ, F )1−vv∗ and also of (E, φ, F )v∗v ⊕
(E, φ, F )1−v∗v, so (E1, φ1, F1) ⊕ (E, φ, F )v∗v is a “compact perturbation” of
(E0, φ0, F0)⊕(E, φ, F )vv∗ . But (E, φ, F )v∗v and (E, φ, F )vv∗ are unitarily equiv-
alent, so (E0, φ0, F0) ∼c (E1, φ1, F1). �

Before proving the main result, we need two lemmas on extending operator
homotopies (mod K) from ideals. The proof in spirit is similar to the proof of
17.2.7.

Lemma 17.10.5. Let A be a graded separable C∗-algebra, I a closed two-sided
ideal of B. Let E be a countably generated Hilbert B-module for some B, and
φ : A→ B(E) a ∗-homomorphism. Set

C = {x ∈ B(E) | [x, φ(a)] ∈ K(E) for all a ∈ A},
K = {x ∈ B(E) | xφ(a) ∈ K(E) for all a ∈ A},
D = {x ∈ B(E) | [x, φ(a)] ∈ K(E) for all x ∈ I},
L = {x ∈ B(E) | xφ(a) ∈ K(E) for all x ∈ I}.

These are all graded C∗-subalgebras of B(E); K is an ideal of C, L an ideal of
D. Then D = C+L.
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Proof. Let x ∈ D be homogeneous. Set J = K(E), A1 = C · 1 + K(E),
A2 the C∗-subalgebra of B(E) generated by K(E) and {[x, φ(a)] | a ∈ A}, ∆
the subspace generated by x and φ(A). Apply Kasparov’s Technical Theorem
(14.6.2) to get M and N ; we have Mx ∈ L, Nx ∈ C. �

Lemma 17.10.6. Let A and B be graded C∗-algebras, with A separable, and
let (E, φ, F ) ∈ E(A,B). Let I be an ideal in A. Suppose there is an operator
homotopy (E, φ, Ft) in E(I,B) with F0 = F . Then there is an operator homotopy
(E, φ,Gt) in E(A,B) with G0 = F and (Gt−Ft)φ(a) ∈ K(E) for all t and a ∈ I.

Proof. Let C, K, D, L be as in 17.10.5. Then F ∈ C, Ft ∈ D for all t. Let
q : C/K → D/L be the map induced by the inclusion of C into D; by 17.10.5 q
is surjective. If ft is the image of Ft in D/L and g0 the image of F in C/K, then
the ft and g0 are self-adjoint unitaries of degree 1. There is a continuous path
〈gt〉 of preimages in C/K, consisting of self-adjoint unitaries of degree 1 (break
up [0, 1] into small subintervals on which ft is nearly constant; successively lift
each interval to an interval of invertible self-adjoint elements of degree 1, and
take the unitaries in the polar decompositions). Then let (Gt) be a continuous
lift of (gt) in C with G0 = F and each Gt of degree 1 (3.4.6). �

Theorem 17.10.7. If A is separable and B is σ-unital , then ∼c and ∼oh
coincide on E(A,B).

Proof. Let u be the unilateral shift on a (trivially graded) Hilbert space H, and
T the C∗-algebra generated by u (9.4.2). Then T contains K(H); the projection
p = 1−uu∗ is a one-dimensional projection. Let (E, φ, F ) be a Kasparov (A,B)-
bimodule which is operator homotopic to a degenerate element (E, φ, F ′). The
restriction of (E⊗̂CH, φ⊗̂1T , F ′⊗̂1) ∈ E(A⊗̂T, B) to a Kasparov (A⊗̂K(H), B)-
bimodule is operator homotopic to (E ⊗̂C H, φ⊗̂1K(H), F ⊗̂1). By 17.10.6 there
is a G ∈ B(E ⊗̂C H) such that (E ⊗̂C H, φ⊗̂1T , G) ∈ E(A⊗̂T, B) and

(G−F ⊗̂1)(φ⊗̂1)(x) ∈ K(E ⊗̂C H)

for all x ∈ A⊗̂K(H).
If ψ is the map of A ∼= A⊗̂1 ⊆ A⊗̂T into B(E ⊗̂C H) defined by φ⊗̂1T , then

(E ⊗̂C H, ψ, G, 1⊗̂u) defines a cobordism between(
E ⊗̂C pH, (1⊗̂p)ψ(1⊗̂p), (1⊗̂p)G(1⊗̂p)

)
and the 0-module. But, by 17.10.4, (E, φ, F ) is cobordant to(

E ⊗̂C pH, (1⊗̂p)ψ(1⊗̂p), (1⊗̂p)G(1⊗̂p)
)
. �

17.11. Unbounded Kasparov Modules

It is sometimes convenient to define Kasparov modules using an unbounded
operator in place of F .

Baaj and Julg [1983] showed how to define KK(A,B) in terms of unbounded
Kasparov modules. We call this approach the Baaj–Julg picture of KK(A,B).
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Definition 17.11.1. Let A and B be graded C∗-algebras. An unbounded
Kasparov module for (A,B) is a triple (E, φ,D) where E is a Hilbert B-module,
φ : A → B(E) is a graded ∗-homomorphism, and D is a self-adjoint regular
operator on E, homogeneous of degree 1, such that

(i) (1+D2)−1φ(a) extends to an element of K(E) for all a ∈ A, and
(ii) the set of a ∈ A such that [D,φ(a)] is densely defined and extends to an

element of B(E), is dense in A.

It is possible to relax somewhat the condition that D be actually self-adjoint;
in applications such modules arise naturally which are not exactly of the above
form.

Denote the set of all unbounded Kasparov modules for (A,B) by Ψ1(A,B).
Ψ1(A,B) is a semigroup under orthogonal direct sum. (The notation suggests
that an unbounded Kasparov module is a sort of pseudodifferential operator of
degree 1 from A to B.)

Example 17.11.2. Let M be a compact Riemannian manifold and P an elliptic
pseudodifferential operator of degree 1 between smooth vector bundles V (0) and
V (1) over M . Then, as in 17.2.1(d),(

L2(V (0))⊕L2(V (1)), φ,
[

0 P ∗

P 0

])
gives an unbounded Kasparov (C(M),C)-module.

The advantage of considering unbounded Kasparov modules in this situation
is that it is much easier to take tensor products of elliptic pseudodifferential
operators of degree 1 than it is for operators of degree 0 (cf. 18.9).

Define a map β : Ψ1(A,B) → E(A,B) as follows. If (E, φ,D) is an unbounded
Kasparov module, then D(1+D2)−1 extends to an operator F ∈ B(E).

Proposition 17.11.3. (E, φ, F ) ∈ E(A,B).

Proof. F is self-adjoint and of degree 1. Next, 1− F 2 is the extension of
(1+D2)−1, so (F 2−1)φ(a) ∈ K(E) for all a. It is a little harder to show that
[F, φ(a)] ∈ K(E). If a is such that [D,φ(a)] extends to an element of B(E) (such
a are dense in A), then we have

[F, φ(a)] = [D,φ(a)](1+D2)−1/2 +D[(1+D2)−1/2, φ(a)]

By 17.1.3 it suffices to show that [F, φ(a)] ∈ cφ(A), i.e. [F, φ(a)]φ(b) ∈ K(E) for
all b ∈ A. (1 +D2)−1 ∈ cφ(A)c, so (1 +D2)−1/2 ∈ cφ(A)c; thus [D,φ(a)](1 +
D2)1/2φ(b) ∈ K(E) for any b. Also, since

(1+D2)−1/2 =
1
π

∫ ∞
0

λ−1/2(1+D2 +λ)−1 dλ
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with a uniformly converging integral, and since [D,φ(a)] is bounded, the integral

1
π

∫ ∞
0

λ−1/2D[(1+D2 +λ)−1, φ(a)]φ(b) dλ

converges uniformly to D[(1+D2)−1/2, φ(a)]φ(b). Also,

D[(1+D2 +λ)−1, φ(a)]φ(b) = D(1+D2 +λ)−1/2(1+D2 +λ)−1/2φ(ab)

−[D,φ(a)](1+D2 +λ)−1φ(b)±φ(a)(1+D2 +λ)−1/2D(1+D2 +λ)−1/2φ(b).

These terms are all in K(E) since D(1+D2 +λ)−1/2 ∈ B(E) and

(1+D2 +λ)−1/2 ∈ cφ(A)c. �

Theorem 17.11.4. If A is separable, then the map from Ψ1(A,B) to KKc(A,B)
is surjective.

Proof. Let (E, φ, F ) be a Kasparov module, with F = F ∗ and F 2 = 1. Let (aj)
be a sequence in A which is total. Let h be a strictly positive element of K(E)
of degree 0, which commutes with F (e.g. h0 +Fh0F for h0 strictly positive of
degree 0).

We need a lemma reminiscent of the Kasparov Technical Theorem (14.6.2).

Lemma 17.11.5. There is an l ∈ C∗(h), strictly positive of degree 0, such that ,
for all j,

(i) [F, φ(aj)]l−1 extends to an element of B(E), and
(ii) [l−1, φ(aj)] is defined on the domain of l−1 and extends to an element of

B(E).

Proof. By [Pedersen 1979, 3.12.14] (cf. 12.4.1), there exists an approximate
identity un for K(E), contained in C∗(h), quasicentral for φ(A), with the prop-
erty that un+1un = un for all n. By passing to a subsequence we may assume
that ‖[F, φ(aj)]dn‖ < 2−2n and ‖[dn, φ(aj)]‖ < 2−2n for 1 ≤ j ≤ n, where
dn = un+1−un. Set X = C∗(h)̂ ∼= σ(h)\{0}, and let Xn be the support of un.
Then 〈Xn〉 is an increasing sequence of compact subsets of X with X =

⋃
Xn.

The sum
∑

2ndn converges pointwise on X to an unbounded function r; r ≥ 2n

on X \Xn. Then l = r−1 defines an element of C∗(h). For any j the sequences∑
n 2n[F, φ(aj)]dn and

∑
n 2n[dn, φ(aj)] are norm-convergent. �

Proof of 17.11.4 (cont.). Let l be as in 17.11.5, and set D = Fl−1. Then
D = D∗ and (1+D2)−1 extends to l2(1+ l2)−1 ∈ K(E). For all j, we have that
[D,φ(aj)] = [F, φ(aj)]l−1 +F [l−1, φ(aj)] extends to an element of B(E). Thus
(E, φ,D) ∈ Ψ1(A,B). β(E, φ,D) = (E, φ,G), where G = D(1 +D2)−1/2 =
F (1+ l2)−1/2. G is a “compact perturbation” of F . �

Thus every KK-element can be represented by an unbounded Kasparov module.
We leave to the reader the task of appropriately formulating the equivalence
relations on Ψ1(A,B) corresponding to the standard relations on E(A,B); see
[Baaj and Julg 1983; Hilsum 1985].
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18. The Intersection Product

This section contains the heart of Kasparov theory, the intersection product
(often called the Kasparov product). This product generalizes composition and
tensor product of ∗-homomorphisms, and also the cup and cap products of topo-
logical K-theory. The intersection product is the device used to prove all the
deeper properties of the KK-groups.

18.1. Description of the Product

The most general form of the product is a pairing

⊗̂D : KK(A1, B1 ⊗̂D)×KK(D ⊗̂A2, B2)→ KK(A1 ⊗̂A2, B1 ⊗̂B2).

However, we will restrict attention first to the special case where B1 = A2 = C,
from which the general case can be derived. That is, we will define a map

⊗̂D : KK(A,D)×KK(D,B)→ KK(A,B).

If x ∈ KK(A,D) and y ∈ KK(D,B), we will write x⊗̂Dy, x∩y, xy, or y◦x for
the product, which lies in KK(A,B). The various notations reflect the different
interpretations of the product from the standard points of view.

18.2. Outline of the Construction

We will define the product as follows. Given x ∈ KK(A,D), y ∈ KK(D,B),
choose representatives (E1, φ1, F1) ∈ E(A,D) and (E2, φ2, F2) ∈ E(D,B); then
define (E, φ, F ) ∈ E(A,B) by E = E1 ⊗̂φ2 E2, φ = φ1 ⊗̂φ2 1, F = F1 #F2, where
F1 # F2 is a suitable combination of F1 and F2.

The entire technical difficulty is in finding a suitable definition of F1 # F2.
In special cases it is clear what to do. For example, if x is induced by a homo-
morphism f : A → D, we may choose E1 = D, φ1 = f , F1 = 0; then E ∼= E2,
and we may take F = F2. More generally, if x comes from a homomorphism
f : A→ D ⊗̂K, we may take E1 = HD, φ1 = f , F1 = 0. Then E ∼= H ⊗̂CE2, and
we may take F = 1⊗̂F2. On the other hand, if y is induced by a homomorphism
g : D → B, we may take E2 = B, φ2 = g, F2 = 0. Then we may take F = F1 ⊗̂1.
The situation when y comes from g : D → B ⊗̂K is similar. In each case we end
up with the composition defined in 17.8.

In general, F will be a combination of F1 ⊗̂ 1 and 1⊗̂F2 (when these are
suitably defined). The coefficients will come from a judiciously chosen “partition
of unity”. It is a quite delicate matter to choose these coefficients in general so
that (E, φ, F ) is actually a Kasparov module for (A,B) with the right properties.
Roughly speaking, we will want to take F to be of the form[

1 ⊗̂ F 2
2

F 2
1 ⊗̂ 1 + 1 ⊗̂ F 2

2

]1/2

(F1 ⊗̂ 1) +
[

F 2
1 ⊗̂ 1

F 2
1 ⊗̂ 1 + 1 ⊗̂ F 2

2

]1/2

(1 ⊗̂ F2)

We need to make sense out of this expression.



18. The Intersection Product 167

Examples 18.2.1. To get an idea of what is involved in the general construction,
let us look at two simple examples.

(a) Suppose A = D = B = C,

(E1, φ1, F1) =
(

H1 ⊕Hop
1 , 1,

[
0 V ∗

V 0

])
,

(E2, φ2, F2) =
(

H2 ⊕Hop
2 , 1,

[
0 W ∗

W 0

])
as in 17.3.4, with V and W Fredholm partial isometries. Then E = E1 ⊗̂φ2 E2

∼=
(H1⊕Hop

1 ) ⊗̂ (H2⊕Hop
2 ) as an external tensor product, so we may define F1 ⊗̂ 1

and 1 ⊗̂ F2 as in 14.4.4. Under the isomorphism of this external tensor product
with the internal tensor product (H1⊕Hop

1 )⊗̂C (H2⊕Hop
2 ) ∼= [(H1⊕Hop

1 )⊗̂H2]⊕
[(H1 ⊕Hop

1 ) ⊗̂Hop
2 ], these operators become

F1⊗̂1 =


0 V ∗⊗̂1

V ⊗̂1 0 0

0 0 V ∗⊗̂1
V ⊗̂1 0

,

1⊗̂F2 =

 0
1⊗̂W ∗ 0

0 −1⊗̂W ∗

1⊗̂W 0
0 −1⊗̂W

0

.
We collect together the homogeneous spaces by interchanging the second and

fourth summands to obtain

(H1 ⊗H2 ⊕Hop
1 ⊗Hop

2 )⊕ (H1 ⊗Hop
2 ⊕Hop

1 ⊗H2);

the operators become

F1⊗̂1 =

 0
0 V ∗⊗1

V⊗1 0

0 V ∗⊗1
V⊗1 0

0

,

1⊗̂F2 =

 0
1⊗W ∗ 0

0 −1⊗W

1⊗W 0
0 −1⊗W ∗

0

.
If we form F = F1 ⊗̂ 1 + 1 ⊗̂ F2, then F is a self-adjoint Fredholm operator, but
F 2 − 1 /∈ K, in fact F 2 = diag(V ∗V ⊗ 1 + 1 ⊗W ∗W , V V ∗ ⊗ 1 + 1 ⊗WW ∗,
V ∗V ⊗ 1 + 1⊗WW ∗, V V ∗ ⊗ 1 + 1⊗W ∗W ).
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We can make sense out of the operators

M =
F 2

1 ⊗̂ 1
F 2

1 ⊗̂ 1 + 1 ⊗̂ F 2
2

and N =
1 ⊗̂ F 2

2

F 2
1 ⊗̂ 1 + 1 ⊗̂ F 2

2

by setting P1 = V ∗V , Q1 = V V ∗, P2 = W ∗W , Q2 = WW ∗; then M should be
an operator which is

1 on (P1H1 ⊕Q1Hop
1 )⊗ ((1− P2)H2 ⊕ (1−Q2)Hop

2 ),

0 on ((1− P1)H1 ⊕ (1−Q1)Hop
1 )⊗ (P2H2 ⊕Q2Hop

2 ),
1
2 on (P1H1 ⊕Q1Hop

1 )⊗ (P2H2 ⊕Q2Hop
2 ).

(It doesn’t matter how M is defined on the finite-dimensional subspace

((1− P1)H1 ⊕ (1−Q1)Hop
1 )⊗ ((1− P2)H2 ⊕ (1−Q2)Hop

2 )

except that we want 0 ≤M ≤ 1; for symmetry take M to be 1
2 on this subspace.)

Then let N = 1 −M ; it follows that F ′ = M1/2(F1 ⊗̂ 1) + N1/2(1 ⊗̂ F2) will
have all the right properties to make (E, 1, F ) an element of E(C,C), and this
module is a natural candidate for the product.

This example is due to R. Douglas.

(b) We consider essentially the same example from a different point of view.
This time, take the modules to be(

Hi ⊕Hop
i ,

[
Pi 0
0 Qi

]
,

[
0 1
1 0

])
for i = 1, 2, where Pi, Qi are projections with Pi − Qi compact. Now E ∼=
(H1 ⊕Hop

1 ) ⊗̂ (P2H2 ⊕Q2Hop
2 ) as an external tensor product.

There is a problem in even defining 1 ⊗̂F2 in this case. To give a satisfactory
definition, write E as(

1 ⊗̂
[
P2 0
0 Q2

])
[(H1 ⊕Hop

1 ) ⊗̂ (H2 ⊕Hop
2 )].

Then 1 ⊗̂ F2 can be defined as(
1 ⊗̂

[
P2 0
0 Q2

])(
1 ⊗̂

[
0 1
1 0

])(
1 ⊗̂

[
P2 0
0 Q2

])
= 1 ⊗̂

[
0 P2Q2

Q2P2 0

]
.

F1 ⊗̂ 1 makes sense as
[

0
1

1
0

]
⊗̂ 1.

Now suppose for simplicity that P2 = Q2 = 1 (the second module is then
degenerate). If we expand the tensor product and collect together homogeneous
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subspaces as in (a), the operators become

F1⊗̂1 =

 0
0 1⊗1

1⊗1 0

0 1⊗1
1⊗1 0

0

 ,

1⊗̂F2 =

 0
1⊗1 0

0 −1⊗1

1⊗1 0
0 −1⊗1

0

.
Now we have (F1⊗̂1+1⊗̂F2)2 = F 2

1 ⊗̂1+1⊗̂F 2
2 = 2, so if we blindly follow the

previous formulas for M and N we get M = N = 1
2 , so F = 1√

2
(F1 ⊗̂1+1 ⊗̂F2).

However, unless P1 = Q1,
(
E,
[
P1
0

0
Q1

]
, F
)

is not a Kasparov (C,C)-module
since

[F, φ(1)] =
1√
2

[
0 (Q1−P1)⊗ 1

(P1−Q1)⊗ 1 0

]
/∈ K(E).

So we must take the formula

M =
F 2

1 ⊗̂ 1
F 2

1 ⊗̂ 1 + 1 ⊗̂ F 2
2

with a grain of salt; a more delicate choice of M is necessary in this case.
Of course, in these particular situations there are simple ways of avoiding the

difficulties by modifying the modules; however, these two examples (particularly
the second one) illustrate the problems involved in making a general definition
of the product.

18.3. Connections

The first problem is to make sense out of the operators F1 ⊗̂ 1 and 1 ⊗̂ F2.
There is no problem giving F1 ⊗̂ 1 the obvious meaning (14.4.2), but there is
no obvious meaning for 1 ⊗̂ F2 (even if F2 commutes with φ(D)). The notion
of connection, due to Connes and Skandalis [1984], is designed to handle this
situation.

The construction of the product using connections is a great improvement
over Kasparov’s original method, since the connection method makes it feasible
to explicitly calculate products of KK-elements which arise naturally in appli-
cations.

Suppose E1 is a countably generated Hilbert D-module, E2 a countably gen-
erated Hilbert B-module, ψ : D → B(E2) is a graded ∗-homomorphism, and
F2 ∈ B(E2) has the property that [F2, ψ(D)] ⊆ K(E2). (Recall that all commu-
tators are graded commutators.) We seek an operator F ∈ B(E) (E = E1 ⊗̂ψE2)
which “plays the role of 1 ⊗̂F2 up to compacts.” More specifically, we make the
following definitions.
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For any x ∈ E1 there is an operator Tx ∈ B(E2, E) defined by Tx(y) = x ⊗̂ y.
T ∗x is defined by T ∗x (z ⊗̂ y) = ψ(〈x, z〉)y.

Definition 18.3.1. An operator F ∈ B(E) is called an F2-connection for E1

(or an F2-connection on E) if, for any x ∈ E1,

Tx ◦ F2 − (−1)∂x·∂F2F ◦ Tx ⊆ K(E2, E),

F2 ◦ T ∗x − (−1)∂x·∂F2T ∗x ◦ F ⊆ K(E,E2).

The commutation conditions of 18.3.1 may be more cleanly described as follows.
For x ∈ E1, define

T̃x =
[

0 T ∗x
Tx 0

]
∈ B(E2 ⊕ E).

Similarly, if F ∈ B(E), set F̃ = F2⊕F ∈ B(E2⊕E). Then F is an F2-connection
if and only if [T̃x, F̃ ] ∈ K(E2 ⊕ E) for all x ∈ E1.

Examples 18.3.2. (a) If [F2, ψ(D)] = 0, then 1 ⊗̂ F2 makes sense in B(E), and
is an F2-connection on E.

(b) If D is unital and E1 = ĤD, then there is a standard connection for any
F2: in this case, there is an isomorphism ĤD ⊗̂ψ E2

∼= Ĥ ⊗̂ E2 (regarded as
an external tensor product), and the operator F corresponding to 1 ⊗̂ F2 under
this isomorphism is an F2-connection for ĤD. This connection is called the
Grassmann connection. If ĤD ⊗̂φ E2 is regarded as the internal tensor product
Ĥ ⊗̂C E2, then the Grassmann connection becomes diag(1,−1) ⊗ F2; in other
words, F (x ⊗̂ y) = (−1)∂F ·∂x(x ⊗̂ F2y).

(c) Suppose F2 = 0. A 0-connection on E is an operator F ∈ B(E) with the
property that FT and TF are in K(E) for all T ∈ K(E1) ⊗̂ 1. To prove this, use
the fact that K(E1)⊗̂1 is generated by the rank one operators θx,y ⊗̂1 = Tx ◦T ∗y .

Proposition 18.3.3. For any E1, E2, ψ, F2 as above, there exists an F2-
connection for E1. In fact , if t→ F t2 is a norm-continuous path of operators on
E2, all commuting with ψ(D) (in the graded sense) mod K(E2), then there is a
norm-continuous path F t, where F t is an F t2-connection for E1. If the F t2 are
homogeneous of degree n, then the F t may be chosen homogeneous of degree n;
if F t2 is self-adjoint then F t may be chosen self-adjoint .

Proof. This is an easy consequence of the stabilization theorem and 18.3.2(b).
We can write E1 = P ĤD as Hilbert D̃-modules, where P is a projection of degree
0 in B(ĤD). Then E1 ⊗̂ψ E2

∼= E1 ⊗̂ψ E2
∼= P ĤD ⊗̂ψ E2

∼= (P ⊗̂ 1)(ĤD ⊗̂ψ E2).
Let Gt be the Grassmann connection of F t2 on HD ⊗̂ψ E2, and set

F t = (P ⊗̂ 1)Gt(P ⊗̂ 1). �

The connections defined in the proof of 18.3.3 are also called Grassmann con-
nections.

Proposition 18.3.4. Let E1, E2, ψ, F2, F ′2 be as above.
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(a) If F is an F2-connection, then F ∗ is an F ∗2 -connection, F (0) is an F
(0)
2 -

connection, and F (1) is an F
(1)
2 -connection.

(b) If F is an F2-connection and F ′ is an F ′2-connection, then F + F ′ is an
(F2 + F ′2)-connection and FF ′ is an (F2F

′
2)-connection.

(c) The set of all F2-connections is an affine space parallel to the space of all
0-connections.

(d) If F is an F2-connection and F and F2 are normal operators, and f is a
continuous function, then f(F ) is an f(F2)-connection.

(e) If F is an F2-connection and T ∈ K(E1) ⊗̂ 1, then [T, F ] ∈ K(E).
(f) Let E3 be a Hilbert C-module and ω : B → B(E3), and F3 ∈ B(E3) with

[F3, ω(B)] ⊆ K(E3). If F23 is an F3-connection on E2 ⊗̂ω E3, and F is an
F23-connection on E = E1 ⊗̂ψ (E2 ⊗̂ω E3), then F is an F3-connection on
E ∼= (E1 ⊗̂ψ E2) ⊗̂ω E3.

Proof. (a), (b), (c), (d), and (f) are obvious, and (e) follows from an argument
similar to 18.3.2(c). �

The next proposition, which will be useful in proving associativity of the inter-
section product, is a good practice computation using connections and graded
commutators.

Proposition 18.3.5. Let (E1, φ1, F1) ∈ E(A,D1), (E2, φ2, F2) ∈ E(D1, D2),
(E3, φ3, F3) ∈ E(D2, B). Set E12 = E1 ⊗̂φ2 E2, E23 = E2 ⊗̂φ3 E3, E = E1 ⊗̂φ2

E23
∼= E12⊗̂φ3E3. Let G12 be an F2-connection on E12 and G23 an F3-connection

on E23. If G is a G23-connection on E, then [G12 ⊗̂ 1, G] is an [F2 ⊗̂ 1, G23]-
connection on E (where G12 ⊗̂ 1 ∈ B(E) is defined using the isomorphism E ∼=
E12 ⊗̂φ3 E3).

Proof. We may assume that the elements are homogeneous by 18.3.4(a). Set
H = [G12 ⊗̂ 1, G], H23 = [F2 ⊗̂ 1, G23]. If x ∈ E1, let T̃x ∈ B(E23 ⊕ E) be as
in 18.3.1, and let G̃ = G23 ⊕G ∈ B(E23 ⊕ E), G̃12 = F2 ⊕G12 ∈ B(E2 ⊕ E12),
G̃12 ⊗̂1 = (F2 ⊗̂1)⊕ (G12 ⊗̂1) ∈ B(E23⊕E), H̃ = H23⊕H ∈ B(E23⊕E). Then
H̃ = [G̃12 ⊗̂ 1, G̃].

We must show [H̃, T̃x] ∈ K(E23 ⊕ E) for any x ∈ E1. We have

[[G̃12 ⊗̂ 1, G̃], T̃x] = ±[[T̃x, G̃12 ⊗̂ 1], G̃]± [[G̃, T̃x], G̃12 ⊗̂ 1],

where the signs are determined according to 14.1.3(c). The second term is in
K(E23 ⊕ E) since [G̃, T̃x] ∈ K(E23 ⊕ E) (because G is a connection). For the
same reason, [T̃x, G̃12 ⊗ 1] ∈ K(E2 ⊕E12) ⊗̂ 1 ⊆ B(E23 ⊕E), so the first term is
in K(E23 ⊕ E) by 18.3.4(e) and (f). �

As an application of the notion of connection, we have the following result, which
will be useful in relating functoriality of KK with the intersection product. The
proof is a generalization of the construction done in 17.8.2(a).
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Proposition 18.3.6. Let A and B be graded C∗-algebras, with A σ-unital . If
(E, φ, F ) ∈ E(A,B), then there is an (E′, φ′, F ′) ∈ E(A,B) with φ′ essential and
(E, φ, F ) ∼h (E′, φ′, F ′).

Proof. Let E0 be the submodule φ(A)E of E. We will show that (E0, φ,H) ∼h
(E, φ, F ) for suitable H ∈ B(E0). If E0 is complemented in E, the proof is easy:
if P ∈ B(E) is the projection onto E0, then (E, φ, F ) is a “compact perturbation”
of (E0, φ, PFP ) ⊕ ((1 − P )E, 0, 0). Since E0 is not necessarily complemented,
we must use an alternate argument. Let Ē = C([0, 1], E) as a graded Hilbert
(IB)-module, and let Ē0 be the submodule {f : [0, 1] → E | f(1) ∈ E0}. We
will find a homotopy of the form (Ē0, ψ,G) ∈ E(A, IB).

Let J = {f : [0, 1] → Ã | f(1) ∈ A}; J is an ideal in IÃ. Let ω : A →
J embed as constant functions. If J is regarded as a graded Hilbert (IÃ)-
module, then Ē0

∼= J ⊗̂1⊗̂φ Ē, where φ̃ : Ã → B(E) is the unital extension of
φ. Let F̄ = 1 ⊗ F ∈ B(Ē), and let G be a Grassmann F̄ -connection on Ē0.
Then (Ē0, ω ⊗̂ 1, G) ∈ E(A, IB). The restriction to 0 gives a Kasparov (A,B)-
module of the form (Ã ⊗̂φ E, j, G0), where j : A → Ã is the inclusion; when
Ã ⊗̂φE is identified with E this triple becomes (E, φ, F0), where F0 is a compact
perturbation of F . Similarly, the restriction to 1 gives a Kasparov (A,B)-module
of the form (A ⊗̂φ E, i ⊗̂ 1, G1); under the isomorphism A ⊗̂φ E ∼= E0 this triple
becomes (E, φ,H) for some H. �

There does not seem to be any way to prove the analogous statement for ∼oh or
∼c except to use the fact that these equivalence relations coincide with ∼h.

18.4. Construction of the Product

We are now in a position to construct the product of two Kasparov modules.
We will show that if (E1, φ1, F1) is a Kasparov (A,D)-module and (E2, φ2, F2)
is a Kasparov (D,B)-module, then there is an F2-connection F for E1 making
(E, φ, F ) a Kasparov (A,B)-module and for which [F1 ⊗̂1, F ] is “small”. Such a
connection is unique up to operator homotopy and is compatible with the equiv-
alence relation ∼h, so we obtain a pairing KK(A,D)×KK(D,B)→ KK(A,B).

The proofs require the use of Kasparov’s Technical Theorem (14.6.2) in several
places.

Definition 18.4.1. Let F be an F2-connection on E. (E, φ, F ) is called a
Kasparov product for (E1, φ1, F1) and (E2, φ2, F2) if

(a) (E, φ, F ) is a Kasparov (A,B)-module
(b) for all a ∈ A, φ(a)[F1 ⊗̂ 1, F ]φ(a)∗ ≥ 0 mod K(E).

The set of all F such that (E, φ, F ) is a Kasparov product is denoted F1 #D F2.

Note that the commutator in (b) is a graded commutator and the terms are
of degree 1; modulo K(E) the terms are self-adjoint unitaries (on the support
of φ(A)), so the commutator is a self-adjoint operator of norm at most 2 mod
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K(E), i.e. the essential spectrum is contained in [−2, 2]. Condition (b) requires
that the spectrum be contained in [0, 2] on the image of the support of φ(A);
it could be relaxed to merely require that the essential spectrum be contained
in [λ, 2] on the support of φ(A), for some λ > −2. This is the condition that
[F1 ⊗̂ 1, F ] be “small”. (We want the commutator to stay away from −2 instead
of +2, so that F “lines up with” F1 ⊗̂1 instead of −(F1 ⊗̂1).) See the comments
preceding 17.2.7.

Examples 18.4.2. (a) Consider the modules (D, f, 0) ∈ E(A,D) and

(E2, φ2, F2) ∈ E(D,B),

where (D, f, 0) corresponds to a homomorphism f : A → D as in 17.1.2(a).
Assume that φ2 is essential (by 18.3.6 we can always arrange this within any KK-
equivalence class). Then D ⊗̂φ2 E2

∼= E2, and F2 ∈ 0 #D F2. So (E2, φ2 ◦ f, F2)
is a Kasparov product for (D, f, 0) and (E2, φ2, F2). This Kasparov product
represents f∗(y), where y is the class of (E2, φ2, F2).

(b) Consider (E1, φ1, F1) ∈ E(A,D) and (B, g, 0) ∈ E(D,B), where (B, g, 0)
corresponds to a homomorphism g : D → B. Set E = E1 ⊗̂g B. Then F1 ⊗̂ 1 is
a 0-connection, and (E, φ1 ⊗̂ 1, F1 ⊗̂ 1) is a Kasparov product for (E1, φ1, F1)
and (B, g, 0). This Kasparov product represents g∗(x), where x is the class of
(E1, φ1, F1).

(c) Let α =
(
ĤD, φ1,

[
0
1

1
0

])
∈ E(A,D) and β =

(
ĤB , φ2,

[
0
1

1
0

])
∈ E(D,B) be

in the standard form of the Cuntz picture (17.6.1), and assume furthermore that
φ2 is essential. Then ĤD ⊗̂φ2 ĤB

∼= Ĥ ⊗̂C ĤB , and the Grassmann connection
G ∼=

[
1
0

0
−1

]
⊗̂
[

0
1

1
0

]
commutes (in the graded sense) with F1 ⊗̂ 1 ∼=

[
0
1

1
0

]
⊗̂ 1.

Thus, if (ĤD ⊗̂φ2 ĤB , φ1 ⊗̂1, G) is a Kasparov (A,B)-module, it is automatically
a Kasparov product for α and β.

In particular, if A, D, B are trivially graded, (φ(0)
1 , φ

(1)
1 ) is a quasihomomor-

phism from A to D, and (φ(0)
2 , φ

(1)
2 ) is a quasihomomorphism from D to B, and

φ
(0)
2 and φ

(1)
2 extend to homomorphisms from C = φ

(0)
1 (A) + D ⊆ Ms(D) to

Ms(B) which agree mod B (so that (φ(0)
2 , φ

(1)
2 ) defines a quasihomomorphism

from C to B), then the quasihomomorphism (φ(0)
2 ◦φ

(0)
1 ⊕φ

(1)
2 ◦φ

(1)
1 , φ

(1)
2 ◦φ

(0)
1 ⊕

φ
(0)
2 ◦ φ

(1)
1 ) from A to B is a Kasparov product for (φ(0)

1 , φ
(1)
1 ) and (φ(0)

2 , φ
(1)
2 ).

We will see later that we can always arrange for such extendibility if the
algebras are trivially graded (18.13.1). However, if either A or B is trivially
graded and the other has a standard odd grading, in general we cannot ex-
pect extendibility, because if (ĤD ⊗̂φ2 ĤB , φ1 ⊗̂ 1, G) ∈ E(A,B) for the Grass-
mann connection, it not only represents a Kasparov product for

(
ĤD, φ1,

[
0
1

1
0

])
and

(
ĤB , φ2,

[
0
1

1
0

])
, but also represents a product for

(
ĤD, φ1,

[
0
−1
−1

0

])
and(

HB , φ2,
[

0
1

1
0

])
; in this case,

(
ĤD, φ1,

[
0
−1
−1

0

])
represents the negative of(

ĤD, φ1,
[

0
1

1
0

])
in KK(A,D), so extendibility can only occur if the product is

the 0-element of KK(A,B).
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(d) Let A, D and B be graded C∗-algebras; let α = (E, φ1, F ) ∈ E(A,D) with
F = F ∗ and ‖F‖ ≤ 1 (17.4.3), and let β = (E2, φ2, F2) ∈ E(D,B). Let G be
any F2-connection of degree 1 on E = E1 ⊗̂φ2 E2. Set

F = F1 ⊗̂ 1 + ((1− F 2
1 )1/2 ⊗̂ 1)G.

Then F 2 − 1 and F − F ∗ are in K(E) and [F, F1 ⊗̂ 1] ≥ 0 mod K(E), because
G (graded) commutes mod K(E) with F1 ⊗̂ 1 by 18.3.4(e), and G2 − 1 and
G − G∗ are 0-connections. Suppose [F, φ(A)] ⊆ K(E), where φ = φ1 ⊗̂ 1 (this
will not generally hold, but it will, for example, if [F1, φ1(A)] = 0). Then
(E, φ, F ) ∈ E(A,B).

(E, φ, F ) will not generally be a Kasparov product for α and β since F is not
generally an F2-connection. However, we will show later (18.10.1) that (E, φ, F )
is operator homotopic to a Kasparov product for α and β if A is separable and
D σ-unital.

Theorem 18.4.3. If A is separable and D is σ-unital , then there is a Kasparov
product for (E1, φ1, F1) and (E2, φ2, F2), which is unique up to operator homo-
topy . If F1 and F2 are self-adjoint , then there is a self-adjoint F ∈ F1 #D F2.

Proof. Let G be any F2-connection of degree 1. Let J = K(E); A1 = K(E1) ⊗̂
1+K(E); A2 the C∗-subalgebra of B(E) generated by G2−1, [G,φ(A)], G−G∗,
and [G, F1 ⊗̂ 1]; and ∆ the subspace spanned by F1 ⊗̂ 1, G, and φ(A). It is
obvious that F1 ⊗̂ 1 and φ(A) derive A1, and so does G by 18.3.4(e); thus ∆
derives A1. G2 − 1 and G − G∗ are 0-connections, so they multiply A1 into J .
[G,φ(a)]T = [G,φ(a)T ] − φ(a)[G,T ] for T ∈ K(E1) ⊗̂ 1, a ∈ A, so [G,φ(a)]
multiplies A1 into J by 18.3.4(e). Similarly, [G,F1 ⊗̂ 1] multiplies A1 into J , so
A1 ·A2 ⊆ J . Thus the hypotheses of the Technical Theorem are satisfied, so we
obtain M and N of degree 0 with 0 ≤M,N ≤ 1, M +N = 1, and MA1, NA2,
and [N,∆] all contained in K(E).

Put F = M1/2(F1 ⊗̂ 1) + N1/2G. Since M is a 0-connection, M1/2 is also a
0-connection by 18.3.4(d). We have [M1/2, F1 ⊗̂ 1] ∈ K(E), so M1/2(F1 ⊗̂ 1) is
a 0-connection. N = 1−M is a 1-connection, so N1/2 is also a 1-connection by
18.3.4(d); thus by 18.3.4(b) F is an F2-connection.

We show that (E, φ, F ) ∈ E(A,B). Since M and N commute with F1 ⊗̂ 1, G,
φ(A), and each other mod K(E), for a ∈ A we have

(F 2 − 1)φ(a) = (M (F 2
1 ⊗̂1) +M1/2N1/2[G, F1⊗̂1] +NG2 − 1)φ(a) mod K(E)

= (M (F 2
1 − 1) +NG2 −M −N)φ(a) mod K(E)

(since N [G,F1 ⊗̂ 1] ∈ K(E)); this in turn equals

M ((F 2
1 − 1) ⊗̂ 1)φ(a) +N (G2 − 1)φ(a) mod K(E)

since ((F 2
1 −1)⊗̂1)φ(a) ∈ A1, G2−1 ∈ A2. Similarly, (F −F ∗)φ(a) and [F, φ(a)]

are in K(E).
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Also, [F1 ⊗̂ 1, F ] = M1/2[F1 ⊗̂ 1, F1 ⊗̂ 1] = 2M1/2(F 2
1 ⊗̂ 1) mod K(E), and

(F 2
1 ⊗̂ 1)φ(a) = φ(a) for a ∈ A, so φ(a)[F1 ⊗̂ 1, F ]φ(a∗) = 2φ(a)M1/2φ(a∗) ≥ 0

mod K(E). Thus F ∈ F1 #D F2.
If F1 and F2 are self-adjoint, and a self-adjoint F is desired, set

F = M1/4(F1 ⊗̂ 1)M1/4 +N1/4GN1/4.

This F is a “compact perturbation” of the previous F .
To prove uniqueness, let F, F ′ ∈ F1 #D F2. Set J = K(E); A1 = K(E1) ⊗̂ 1 +

K(E); A2 the C∗-algebra generated by [F1 ⊗̂1, F ], [F1 ⊗̂1, F ′], and F −F ′; and
∆ the subspace spanned by φ(A), F1 ⊗̂ 1, F , F ′. Apply the Technical Theorem
to obtain M and N , and set F ′′ = M1/2(F1 ⊗̂ 1) + N1/2F . By an argument
essentially identical to that in the existence proof, we have that F ′′ ∈ F1 #D F2.
Also, for all a ∈ A we have φ(a)[F, F ′′]φ(a)∗ ≥ 0 and φ(a)[F ′, F ′′]φ(a)∗ ≥ 0
mod K(E). So (E, φ, F ) and (E, φ, F ′) are both operator homotopic to (E, φ, F ′′)
by 17.2.7, completing the proof of 18.4.3. �

Theorem 18.4.4. If A is separable and D is σ-unital , the Kasparov product
defines a bilinear function ⊗̂D : KK(A,D)×KK(D,B)→ KK(A,B).

Proof. The Kasparov product of two Kasparov modules is uniquely determined
up to homotopy; it is also clear that it respects direct sums in either variable.
We only need to show it is well defined on KK(A,D) × KK(D,B). Suppose
(E2, φ2, F2) ∈ E(D, IB) gives a homotopy between the Kasparov (D,B)-modules
(E0

2 , φ
0
2, F

0
2 ) and (E1

2 , φ
1
2, F

1
2 ); then a Kasparov product of (E1, φ1, F1) ∈ E(A,D)

and (E2, φ2, F2) gives a homotopy between a Kasparov product of (E1, φ1, F1)
and (E0

2 , φ
0
2, F

0
2 ) and a Kasparov product of (E1, φ1, F1) and (E1

2 , φ
1
2, F

1
2 ). Sim-

ilarly, if (E1, φ1, F1) ∈ E(A, ID) gives a homotopy between Kasparov (A,D)-
modules (E0

1 , φ
0
1, F

0
1 ) and (E1

1 , φ
1
1, F

1
1 ), and (E2, φ2, F2) ∈ E(D,B), then a Kas-

parov product of (E1, φ1, F1) and τC([0,1])(E2, φ2, F2) gives a homotopy between
a Kasparov product for (E0

1 , φ
0
1, F

0
1 ) and (E2, φ2, F2) and a Kasparov product

for (E1
1 , φ

1
1, F

1
1 ) and (E2, φ2, F2). �

18.5. Isomorphism of KKh and KKoh

Using the product and one additional application of the Technical Theorem,
we can prove that ∼h and ∼oh coincide when A and B are small.

We first prove the result in a very special case by explicitly constructing an
operator homotopy.

Lemma 18.5.1. Let ft : C([0, 1]) → C be evaluation at t. Then f0 = f1 in
KKoh(C([0, 1]),C).

Proof. We may represent f t by any module of the form(
H ⊕Hop, ft · 1,

[
0 T ∗

T 0

])
,
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where H is a trivially graded Hilbert space and T is an essentially unitary Fred-
holm operator on H of index 1. The idea will be as follows. Let H = L2[0, 3]
and Ĥ = H ⊕ Hop, and define φ : C([0, 1]) → B(Ĥ) by letting φ(g) be multi-
plication by g̃, where g̃(t) = g(0) for 0 ≤ t ≤ 1, g̃(t) = g(t − 1) for 1 ≤ t ≤ 2,
g̃(t) = g(1) for 2 ≤ t ≤ 3. Let P be the projection onto L2[0, 1/2] ⊕ L2[0, 1/2]
and Q the projection onto L2[5/2, 3] ⊕ L2[5/2, 3]. We seek operators U and
V of the above form

[
0
T
T∗

0

]
commuting with P and Q respectively, such that

(1 − P )U and (1 − Q)V are self-adjoint unitaries on (1 − P )Ĥ and (1 − Q)Ĥ
respectively, commuting with the action of C([0, 1]), and such that U and V are
connected by a path of essentially self-adjoint isometries essentially commuting
with φ(C([0, 1])). Then (P Ĥ, Pφ, PU) represents f0, (QĤ, Qφ,QV ) represents
f1, ((1−P )Ĥ, (1−P )φ, (1−P )U) and ((1−Q)Ĥ, (1−Q)φ, (1−Q)V ) are degen-
erate, and (P Ĥ, Pφ, PU)⊕((1−P )Ĥ, (1−P )φ, (1−P )U) = (Ĥ, φ, U) is operator
homotopic to (QĤ, Qφ,QV )⊕ ((1−Q)Ĥ, (1−Q)φ, (1−Q)V ) = (Ĥ, φ, V ).

We define U and V as follows. It is convenient to work on L2[0, 2π] instead
of L2[0, 3]. Define D ∈ B(L2[0, 2π]) using the basis 1, . . . , cosnx, . . . , sinnx,
. . . , by D(1) = 0, D(cosnx) = − sinnx, D(sinnx) = cosnx. Then D = −D∗,
D2 + 1 ∈ K, and D commutes mod K with multiplication operators. (To see
this, note that [D,Msinnx] and [D,Mcosnx] are finite-rank for all n by standard
trigonometric identities, where Mh is the multiplication operator corresponding
to h.)

Let S = {h ∈ C([0, 2π]) | −1 ≤ h(t) ≤ 1, h(0) = 1, h(2π) = −1}. For
h ∈ S, set Th = Mh − (1 −M2

h)1/2D. Th is essentially unitary and essentially
commutes with multiplication operators. If h0 and h1 are in S, then Th0 and
Th1 are connected by a norm-continuous path of operators of the same form. We
calculate the Fredholm index of Th. It suffices to consider the case h = cosx/2.
Then Th(1) = cosx/2, Th(cosnx) = cos((n − 1

2 )x), Th(sinnx) = sin((n − 1
2 )x).

So kerTh is spanned by 1 − cosx. On the other hand, Th is surjective, i.e. the
closed span of {cos((n − 1

2 )x), sin((n − 1
2 )x)} equals L2[0, 2π]. To see this, for

f ∈ L2[0, 2π], define f̃ ∈ L2[0, 2π] by

f̃(x) =
{
f(2x) for 0 ≤ x ≤ π,

−f(2x− 2π) for π < x ≤ 2π.

The Fourier series for f̃ involves only cosnx and sinnx for n odd. (I am indebted
to J. Rosenberg for this calculation.) Thus the index of Th is 1.

Define

Uh =
[

0 T ∗h
Th 0

]
∈ B(L2[0, 2π]⊕ L2[0, 2π]).

Then Uh essentially commutes with multiplication operators. Let h0 be a func-
tion in S with h0(t) = −1 for t ≥ π/3, h1 a function in S with h1(t) = 1 for
t ≤ 5π/3, and set U = Uh0 , V = Uh1 . �
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Let B be any graded C∗-algebra, and g0, g1 : IB → B the evaluation homomor-
phisms, regarded as elements (B, gi, 0) of E(IB,B). By tensoring the Kasparov
(C([0, 1]),C)-module ω of 18.5.1 with 1B , we obtain a Kasparov (IB,B)-module
ωB giving an operator homotopy between g0⊕(degenerate) and g1⊕(degenerate).

Our goal is to show that if α0 = (E0, φ0, F0) and α1 = (E1, φ1, F1) are homo-
topic elements of E(A,B), then we can add on degenerates to make the αi opera-
tor homotopic. A natural approach is to take a module α = (E, φ, F ) ∈ E(A, IB)
giving a homotopy between α0 and α1, and form a Kasparov product β for α
and ωB . Then β gives a homotopy from α0⊕γ0 to α1⊕γ1 of the form (Ẽ, φ̃, Ft),
where each of γ0 and γ1 is a Kasparov product of α and a degenerate module.

There are two difficulties with this approach: (1) we must show that we can
choose β so that (Ft) is norm-continuous (for a general Kasparov product (Ft)
will be only strictly continuous); (2) however we choose β, we need to show that
γi is operator homotopic to a degenerate.

The second difficulty is easy to resolve: if (E1, φ1, F1) ∈ E(A,D) and (E2, φ2,

F2) ∈ D(D,B), then if G is any Grassmann F2-connection for E1 we have that
G ∈ F1 #D F2, and (E1 ⊗̂φ2 E2, φ1 ⊗̂ 1, G) ∈ D(A,B). Any other Kasparov
product is operator homotopic to this one by 18.4.3.

The following argument shows that we can find a Kasparov product with the
Ft norm-continuous. This argument is due to Skandalis [1984].

Lemma 18.5.2. Let A, D, B be graded C∗-algebras with A separable and D

σ-unital . Let (E1, φ1, F
n
1 ) ∈ E(A,D) and (E2, φ2, F

n
2 ) ∈ E(D,B)(n = 0, 1), with

(Ei, φi, F 0
i ) and (Ei, φi, F 1

i ) operator homotopic for i = 1, 2. Then there is an
operator homotopy between a Kasparov product for (E1, φ1,F

0
1 ) and (E2, φ2, F

0
2 )

and a Kasparov product for (E1, φ1, F
1
1 ) and (E2, φ2, F

1
2 ).

Proof. If (E1, φ1, F
t
1) and (E2, φ2, F

t
2) are operator homotopies, choose a norm-

continuous path Gt, where Gt is an F t2-connection for E1 as in 18.3.3. Let
J = K(E); A1 = K(E1) ⊗̂ 1 + K(E); A2 the C∗-algebra generated by [Gt, φ(A)],
(Gt)2 − 1, Gt −Gt∗, and [F t1 ⊗̂ 1, Gt] for all t; and ∆ the subspace spanned by
φ(A), F t1 ⊗̂ 1, and Gt for all t. Apply the Technical Theorem to obtain M and
N , and set F t = M1/2(F t1 ⊗̂ 1) +N1/2Gt. As in the proof of 18.4.2, check that
(E, φ, F t) ∈ E(A,B) for all t. �

Theorem 18.5.3. If A is separable and B is σ-unital , then the relations ∼h
and ∼oh coincide on E(A,B).

Proof. Combine 18.5.2 with the preceding comments, and recall that Kasparov
products are unique up to operator homotopy. �

Corollary 18.5.4. If A and B are trivially graded with A separable and B

σ-unital , then Ki(B) ∼= KKi(C, B)(i = 0, 1) and Ext(A,B)−1 ∼= KK1(A,B).
So Ext( · , · )−1 is homotopy invariant in each variable (15.10).

An alternate approach, taken in [Skandalis 1984], is to define the product on
KKoh as well as on KKh right from the beginning. 18.5.2 essentially says that
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the product is well defined on KKoh. I feel that the approach we have taken
here is slightly simpler from an expository point of view.

18.6. Associativity

The associativity of the intersection product originally appeared rather mys-
terious; Kasparov’s original proof, while a technical masterpiece, was extremely
difficult to understand and gave no insight into why the result is true. The sim-
plified argument given here is due to Skandalis [1984]. Unfortunately, this proof
also gives only limited insight.

If all algebras are trivially graded, there is an elegant alternate proof due to
Cuntz [1983a] (18.13.1). This proof is more conceptual since it reduces associativ-
ity of the intersection product to associativity of composition of homomorphisms.
However, Cuntz’ proof cannot be generalized to the case where the algebras are
not trivially graded.

Theorem 18.6.1. Let A, B, D1, D2 be graded C∗-algebras with A and D1 sepa-
rable and D2 σ-unital . Let x ∈ KK(A,D1), y ∈ KK(D1, D2), z ∈ KK(D2, B).
Then

x ⊗̂D1 (y ⊗̂D2 z) = (x ⊗̂D1 y) ⊗̂D2 z.

Proof. Represent x, y, z by (E1, φ1, F1), (E2, φ2, F2), (E3, φ3, F3) respectively,
with F1, F2, F3 self-adjoint. Let E12 = E1 ⊗̂φ2 E2, E23 = E2 ⊗̂φ3 E3, E =
E1 ⊗̂φ2⊗̂1 E23

∼= E12 ⊗̂φ3 E3, φ = φ1 ⊗̂ 1 ⊗̂ 1. Let F12 ∈ F1 #D1 F2, F23 ∈
F2#D2F3, F ∈ F1#D1F23, with F12, F23, F self-adjoint. Then (E12, φ1⊗̂1, F12)
represents x⊗̂D1 y, (E23, φ2⊗̂1, F23) represents y⊗̂D2 z, and (E, φ, F ) represents
x ⊗̂D1 (y ⊗̂D2 z).

[F12 ⊗̂ 1, F ] is an [F2 ⊗̂ 1, F23]-connection on E by 18.3.5, so [F12 ⊗̂ 1, F ]+ is
an [F2 ⊗̂ 1, F23]+-connection for E1 by 18.3.4(d). (By x+ we denote the positive
part of x. Note that [F12⊗̂1, F ] is self-adjoint.) Since φ2(d)[F2⊗̂1, F23]φ(d)∗ ≥ 0
mod K(E23) for all d ∈ D1, we have that [F12 ⊗̂ 1, F ]− is a 0-connection for E1.
We also have that [F12 ⊗̂ 1, F ] (and hence [F12 ⊗̂ 1, F ]−) is a 0-connection for
E12 by 18.3.4(e).

Set J = K(E), A1 = K(E) + K(E12 ⊗̂ 1) + K(E1 ⊗̂ 1 ⊗̂ 1), A2 the C∗-
algebra generated by [F12 ⊗̂ 1, F ]− and [F1 ⊗̂ 1 ⊗̂ 1, F ], and ∆ the subspace
spanned by φ(A), F , F1 ⊗̂ 1 ⊗̂ 1, and F12 ⊗̂ 1. Apply the Technical Theorem
to obtain M and N , and set F ′ = M1/2(F1 ⊗̂ 1) + N1/2F . As in the proof of
18.4.3, (E, φ, F ′) ∈ E(A,B), and φ(a)[F, F ′]φ(a)∗ ≥ 0 mod K(E) for all a ∈ A,
so (E, φ, F ′) also represents x ⊗̂D1 (y ⊗̂D2 z) by 17.2.7. On the other hand,
F − F ′ is a 0-connection on E12 since M multiplies K(E12) ⊗̂ 1 into K(E) and
commutes mod K(E) with F1 ⊗̂ 1 ⊗̂ 1. Since F is an F3-connection for E12

(18.3.4(f)), F ′ is also an F3-connection for E12. Also, φ(a)[F12 ⊗̂1, F ′]φ(a)∗ ≥ 0
mod K(E) for a ∈ A since [F12 ⊗̂ 1, F ′] = N1/2[F12 ⊗̂ 1, F ] mod K(E) and
N1/2 multiplies [F12 ⊗̂ 1, F ]− into K(E). Thus F ′ ∈ F12 #D2 F3, i.e. (E, φ, F ′)
represents (x ⊗̂D1 y) ⊗̂D2 z. �
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18.7. Functoriality

The next proposition summarizes the important functoriality properties of
the product.

Proposition 18.7.1. Let A, A′, B, B′, D, D′ be graded C∗-algebras, with A

and A′ separable and D and D′ σ-unital , and let f : A′ → A, g : B → B′,
h : D → D′ be graded ∗-homomorphisms. Let x ∈ KK(A,D), y ∈ KK(D,B),
z ∈ KK(D′, B). Then:

(a) f∗(x ⊗̂D y) = f∗(x) ⊗̂D y.

(b) h∗(x) ⊗̂D′ z = x ⊗̂D h∗(z).

(c) g∗(x ⊗̂D y) = x ⊗̂D g∗(y).

(d) 1A ⊗̂A x = x ⊗̂D 1D = x .

Proof. To prove (a), note that if (E, φ, F ) is a Kasparov product for (E1, φ1, F1)
and (E2, φ2, F2), then (E, φ◦f, F ) is a Kasparov product for (E1, φ1 ◦f, F1) and
(E2, φ2, F2).

For (b), let (E1, φ1, F1) ∈ E(A,D) and (E2, φ2, F2) ∈ E(D′, B) represent x

and z respectively. Then x ⊗̂D h∗(z) is represented by (E1 ⊗̂φ2◦hE2, φ1 ⊗̂1, F ),
where F is an F2-connection for E1. There is an obvious isomorphism E1 ⊗̂φ2◦h
E2
∼= (E1 ⊗̂h D′) ⊗̂φ2 E2, which carries φ1 ⊗̂ 1 to (φ1 ⊗̂ 1) ⊗̂ 1 and sends F to

an F2-connection F ′ for (E1 ⊗̂h D′); ((E1 ⊗̂h D′) ⊗̂φ2 E2, (φ1 ⊗̂ 1) ⊗̂ 1, F ′) is
clearly a Kasparov product for (E1 ⊗̂h D′, φ1 ⊗̂ 1, F1 ⊗̂ 1) and (E2, φ2, F2) and
thus represents h∗(x) ⊗̂D′ z.

(c) is similar to (a), and (d) is obvious. �

This functoriality may be regarded as a special case of the associativity of the
product because of the following proposition, which is an immediate corollary of
18.3.6 and 18.4.2(a)-(b):

Proposition 18.7.2. Let A, D, B be graded C∗-algebras, with A separable and
D σ-unital , and let f : A→ D and g : D → B be graded homomorphisms. Then:

(a) For any x ∈ KK(A,D), g∗(x) = x ⊗̂D g in KK(A,B).
(b) For any y ∈ KK(D,B), f∗(y) = f ⊗̂D y in KK(A,B).

18.8. Ring Structure on KK(A,A)

If A is a separable C∗-algebra, it follows immediately from 18.6.1 and 18.7.1(d)
that KK(A,A) is a unital ring under intersection product.

Proposition 18.8.1. KK(C,C) ∼= Z as a ring .

Proof. We know from 17.3.4 that KK(C,C) ∼= Z as a group, and that any
KK-element arises as a difference of homomorphisms. The bilinearity of the
product and the fact that it agrees with composition for homomorphisms shows
that it must be the ordinary one on Z. �
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More generally, if A is an AF algebra, then KK(A,A) is the endomorphism ring
of K0(A) (23.15.2). KK(A,A) can be calculated in a great many cases using the
Universal Coefficient Theorem (23.11.1).

18.9. General Form of the Product

We now develop the most general form of the intersection product. Let A1,
A2, B1, B2, and D be graded C∗-algebras with A1 and A2 separable and B1

and D σ-unital, and let x ∈ KK(A1, B1 ⊗̂D), y ∈ KK(D ⊗̂A2, B2). We define
x ⊗̂D y to be the composite

(x ⊗̂ 1A2) ⊗̂E (1B1 ⊗̂ y) = τA2(x) ⊗̂E τB1(y),

where E = B1 ⊗̂ D ⊗̂ A2 (17.8.5). This makes sense since τA2(x) ∈ KK(A1 ⊗̂
A2, B1 ⊗̂D ⊗̂A2) and τB1(y) ∈ KK(B1 ⊗̂D ⊗̂A2, B1 ⊗̂B2).

The next proposition summarizes the functoriality properties of the general
form of the product. In each case we will assume, without specific mention, that
all C∗-algebras satisfy the appropriate size restrictions (separable or σ-unital)
necessary to make the products defined.

Proposition 18.9.1. (a) The intersection product ⊗̂D : KK(A1, B1 ⊗̂ D) ×
KK(D ⊗̂A2, B2)→ KK(A1 ⊗̂A2, B1 ⊗̂B2) is bilinear , contravariantly func-
torial in A1 and A2 and covariantly functorial in B1 and B2.

(b) If h : D1 → D2, x ∈ KK(A1, B1 ⊗̂ D1), y ∈ KK(D2 ⊗̂ A2, B2), then
(1 ⊗̂ h)∗(x) ⊗̂D2 y = x ⊗̂ (h ⊗̂ 1)∗(y).

(c) If x ∈ KK(A1, B1 ⊗̂D) and y ∈ KK(D ⊗̂A2, B2), then for any D1 we have

τD1(x ⊗̂D y) = τD1(x) ⊗̂E τD1(y),

where E = D ⊗̂D1.
(d) If x ∈ KK(A1, B1 ⊗̂D1 ⊗̂D) and y ∈ KK(D ⊗̂D2 ⊗̂A2, B2), then

τD2(x) ⊗̂E τD1(y) = x ⊗̂D y,

where E = D1 ⊗̂D ⊗̂D2.

If D = C, we have a way of forming the tensor product of two KK-elements
which generalizes the tensor product of two homomorphisms. One may construct
this tensor product somewhat more simply using unbounded Kasparov modules
[Baaj and Julg 1983]: if (E1, φ1, D1) and (E2, φ2, D2) are unbounded Kasparov
modules (17.9) for x and y respectively, then (E1 ⊗̂E2, φ1 ⊗̂φ2, D1 ⊗̂1+1⊗̂D2)
(suitably interpreted) is an unbounded Kasparov module for x ⊗̂ y. Details are
left to the reader.

It is instructive to see why the same approach does not work to define the
tensor product of two ordinary Kasparov modules (the operator F1 ⊗̂ 1 + 1 ⊗̂F2

does not have the right algebraic and intertwining properties in general). The
difficulty is similar (and closely related) to the fact that a tensor product of
elliptic pseudodifferential operators of degree 0 is not in general an operator
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of the same type. The construction of the intersection product in this case is
exactly the same as the sharp product of elliptic operators of Atiyah and Singer.

18.10. Products on KK1

As another special case of the general form of the product, we can define
a pairing ⊗̂D : KKi(A,D) × KKj(D,B) → KKi+j(A,B) (addition mod 2).
To define the map KK1(A,D) × KK1(D,B) → KK(A,B), for example, let
x ⊗̂D y = x ⊗̂E τC1y, where E = D ⊗̂ C1; the others are similar.

There is a particularly nice interpretation of this product in a special case.
We first note a preliminary result of independent interest (cf. 18.4.2(d)).

Proposition 18.10.1. Let A, D, B be graded C∗-algebras, with A separable
and D σ-unital . Let α = (E1, φ1, F1) ∈ E(A,D), β = (E2, φ2, F2) ∈ E(D,B),
with F1 = F ∗1 and ‖F1‖ ≤ 1. Let G be an F2-connection on E = E1 ⊗̂φ2 E2. Set
φ = φ1 ⊗̂ 1 and

F = F1 ⊗̂ 1 + ((1− F 2
1 )1/2 ⊗̂ 1)G.

If [F, φ(A)] ⊆ K(E), then γ = (E, φ, F ) ∈ E(A,B), and γ is operator-homotopic
to a Kasparov product for α and β, i .e. [γ] = [α] ⊗̂D [β] in KK(A,B).

Proof. If [F, φ(A)] ⊆ K(E), then by 18.4.2(d) (E, φ, F ) ∈ E(A,B), and
satisfies all properties of a Kasparov product except that F is not necessar-
ily an F2-connection. We can construct a Kasparov product (E, φ, F ′), with
F ′ = M1/2(F1 ⊗̂ 1) + N1/2G, as in 18.4.3. (E, φ, F ) is operator-homotopic to
(E, φ, F ′) via

Ft = [tM + (1− t)]1/2(F1 ⊗̂ 1) + [tN + (1− t)((1− F 2
1 ) ⊗̂ 1)]1/2G.

It is routine to check that (E, φ, Ft) ∈ E(A,B) for 0 ≤ t ≤ 1. �

We now show that the intersection product on KK1 generalizes the pairing
between K-theory and K-homology. Let B be a trivially graded σ-unital C∗-
algebra. If p is a projection in Q(B), then p defines an element x ∈ KK1(C, B) as
in 17.6.4. Similarly, if y ∈ KK1(B,C), then y may be regarded as an invertible
extension τ of B by K (i.e. τ : B → Q) by 17.6.4. If x ∈M(B)+ with q(x) = p,
then e2πix is a unitary in B̃, so τ̃(e2πix) is a unitary in Q, where τ̃ is the unital
extension of τ to B̃.

Theorem 18.10.2. Under the standard identification of KK(C,C) with Z,
x ⊗̂B y becomes Index τ̃(e2πix).

Proof. Let s ∈M(B) with s = s∗, ‖s‖ ≤ 1, q(s) = 2p−1. Set t = (1−s2)1/2 ∈
B, and v = t + is. Then v is a unitary in M(B), and v2 ∈ B̃ is homotopic to
e2πix in U1(B̃). The element x is represented by (B ⊗̂ C1, 1 ⊗̂ 1, s ⊗̂ ε), and y

is represented by a module of the form(
(H ⊕H) ⊗̂ C1, φ ⊗̂ 1,

[
1
0

0
−1

]
⊗̂ ε
)
,
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as in 17.6.4. The map φ : B → B(H ⊕H) is of the form

φ(b) =
[
τ(b) θ(b)
ω(b) σ(b)

]
and θ(b), ω(b) are compact for b ∈ B. We may assume τ and φ are essential to
simplify notation. φ extends to a unital homomorphism from M(B) to B(H⊕H),
also denoted φ, but the off-diagonal terms of φ(m) are not necessarily compact
for m ∈M(B).

To form the product, we tensor the above y-module with C1 to obtain(
(H ⊕H) ⊗̂ (C1 ⊗̂ C1), (φ ⊗̂ 1) ⊗̂ 1, (

[
1
0

0
−1

]
⊗̂ ε) ⊗̂ 1

)
∈ E(B ⊗̂ C1, M2).

We further tensor this module with the standard module (C ⊕ Cop, id, 0) ∈
E(M2,C) to obtain an element of E(B ⊗̂ C1, C).

Under the identification of C1 ⊗̂C1 with M2, ε ⊗̂ 1 corresponds to
[

0
1

1
0

]
and

1 ⊗̂ ε becomes
[

0
i
−i

0

]
, so we obtain the module(

E, ψ,
[

0
r
r
0

])
∈ E(B ⊗̂ C1, C),

where E = (H ⊕H)⊕ (H ⊕H)op,

ψ(b ⊗̂ 1) =
[
φ(b) 0

0 φ(b)

]
, ψ(1 ⊗̂ ε) =

[
0 −i1
i1 0

]
, r =

[
1 0
0 −1

]
.

We must compute the product of (B ⊗̂ C1, 1 ⊗̂ 1, s ⊗̂ ε) and
(
E, ψ,

[
0
r
r
0

])
.

By 18.10.1, the product is given by ((B ⊗̂ C1) ⊗̂ψ E, 1, F ), where

F = (s ⊗̂ ε) ⊗̂ 1 + ((1− (s ⊗̂ ε)2)1/2 ⊗̂ 1)
(
1 ⊗̂

[
0
r
r
0

])
Since φ is essential, we may identify (B ⊗̂ C1) ⊗̂ψ E) with E, and F becomes[

0 −iφ(s)
iφ(s) 0

]
+
[
φ(t) 0

0 φ(t)

][
0 r

r 0

]

=

 0
−iτ(s) −iθ(s)
−iω(s) −iσ(s)

iτ(s) iθ(s)
iω(s) iσ(s)

0

+

 0
τ(t) −θ(t)
ω(t) −σ(t)

τ(t) −θ(t)
ω(t) −σ(t)

0



=

 0
τ(v∗) −θ(v)
ω(v∗) −σ(v)

τ(v) −θ(v∗)
ω(v) −σ(v∗)

0

.
The element of KK(C,C) ∼= Z corresponding to the product is

Index
[
τ(v) −θ(v∗)
ω(v) −σ(v∗)

]
.
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To calculate this index, note first that φ(v2) = [φ(v)]2, i.e.[
τ(v2) θ(v2)
ω(v2) σ(v2)

]
=
[

τ(v)2 + θ(v)ω(v) τ(v)θ(v) + θ(v)σ(v)
ω(v)τ(v) + σ(v)ω(v) ω(v)θ(v) + σ(v)2

]
.

Since v2 ∈ B̃, the off-diagonal terms are compact. Also, φ(v)φ(v∗) = 1, so[
1 0
0 1

]
=
[
τ(v)τ(v∗) + θ(v)ω(v∗) τ(v)θ(v∗) + θ(v)σ(v∗)
ω(v)τ(v∗) + σ(v)ω(v∗) ω(v)θ(v∗) + σ(v)σ(v∗)

]
.

Finally, φ(v) is unitary, so

Index
[
τ(v) −θ(v∗)
ω(v) −σ(v∗)

]
= Index

[
τ(v) θ(v)
ω(v) σ(v)

][
τ(v) −θ(v∗)
ω(v) −σ(v∗)

]
= Index

[
τ(v)2+θ(v)ω(v) −τ(v)θ(v∗)−θ(v)σ(v∗)

ω(v)τ(v)+σ(v)ω(v) −ω(v)θ(v∗)−σ(v)σ(v∗)

]
.

By the preceding discussion, this matrix equals[
τ(v2) 0
k −1

]
,

with k compact, so the index equals Index τ(v2) = Index τ(e2πix). �

Corollary 18.10.3. Let B be σ-unital and trivially graded. Identify KK1(C, B)
with K1(B) and KK1(B,C) with K1(B) = Ext(B)−1 in the standard way . Then
the pairing of K1(B) with K1(B) using the intersection product agrees with the
pairing defined in 16.3.2.

Note that the identification of K1(B) with KK1(C, B) in 18.10.3 requires K-
theory Bott periodicity; but 18.10.2 does not (in fact, 18.10.2 requires nothing
outside of the KK-theory of Sections 17 and 18).

18.11. Extendibility of KK-Elements

If f : A1 → A2 is a graded ∗-homomorphism and x ∈ KK(A1, B), we say x

factors through f if there is y ∈ KK(A2, B) with x = f∗(y). If f is an inclusion
map, we say x extends to A2 if x factors through f .

The y is not in general unique. There is a partially defined functor f! (read
f lower shriek!) from KK(A1, B) to KK(A2, B), defined on the set of elements
which factor uniquely through f . In some cases f! is defined everywhere, or can
be naturally extended to a larger set of elements; when this is possible there is
a sort of “wrong-way functoriality” associated with f . Normally f! comes from
left intersection product with an element f ! ∈ KK(A2, A1).

Shriek maps occur more generally; see 17.1.2(g) for a discussion of shriek maps
in geometry.

One could also consider factorizations and shriek maps on the right.
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Proposition 18.11.1. If

0 - J
j
- A �

s
- A/J - 0

is a split exact sequence of separable graded C∗-algebras, and B is any graded
C∗-algebra, then any element of KK(J,B) is extendible to A.

Proof. Suppose x ∈ KK(J,B). Let πs ∈ KK(A, J) be the splitting morphism
(17.1.2(b)), and set y = πs⊗̂Jx. We have j∗(y) = j∗(πs)⊗̂Jx = 1J ⊗̂Jx = x. �

Proposition 18.11.2. Let A be separable, and let η : A → A ⊗̂ K send a to
a ⊗̂ p, where p is a one-dimensional projection of degree 0. Then every element
of KK(A,B) (for any B) factors through η, i .e. extends to A ⊗̂K.

Proof. Let i be the KK(A ⊗̂ K, A)-element corresponding to the identity
map i on A ⊗̂ K as in 17.1.2(a). Then η∗(i) = 1A. Set y = i ⊗̂A x; then
η∗(y) = η∗(i) ⊗̂A x = 1A ⊗̂A x = x. �

Note that to prove extendibility, it is not enough to simply show that the ho-
momorphism φ of (E, φ, F ) ∈ E(J,B) extends to a graded ∗-homomorphism
from A to B(E), since the extended φ may no longer have the right intertwining
properties with F .

From one point of view, the result of 18.11.1 is a fundamental fact; the con-
struction of the product and the proof of its properties could be proved fairly
easily for trivially graded algebras from 17.8.4 assuming split extendibility. Even
if a direct proof of extendibility were available, however, the construction of the
product in the manner we have done it would be of use in explicitly constructing
products in applications.

It should be noted that the proof of 17.2.7, due to Connes and Skandalis,
really gives an extendibility result.

18.12. Recapitulation

We summarize the principal facts we have proved so far about the Kasparov
groups.

18.12.1. KKn(n = 0, 1) is a bifunctor from pairs (A,B) of graded C∗-algebras
to abelian groups. This functor is well behaved only when A is separable and B
is σ-unital; throughout the rest of this paragraph we assume without mention
that all C∗-algebras satisfy these size restrictions.

18.12.2. The elements ofKKn(A,B) are equivalence classes of (A,B)-bimodules.
The bimodules considered may be expressed in various standard forms; for ex-
ample, in the Fredholm module picture (17.5), the Cuntz picture (17.6), or the
Baaj–Julg picture (17.11). The equivalence relation used is not at all critical;
any equivalence relation weaker than ∼c and stronger than ∼h will do.

18.12.3. KKn is homotopy invariant in each variable (17.9.1).
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18.12.4. If B is trivially graded, then KKn(C, B) is naturally isomorphic to
Kn(B) for n = 0, 1 (17.5.5, 17.5.6).

18.12.5. If A and B are trivially graded, then KK1(A,B) is naturally isomor-
phic to Ext(A,B)−1. If A is nuclear, then KK1(A,B) is naturally isomorphic
to Ext(A,B).

18.12.6. KKn is a stable invariant in each variable, i.e. there are natural iso-
morphisms

KKn(A,B) ∼= KKn(A ⊗̂K, B) ∼= KKn(A,B ⊗̂K) ∼= KKn(A ⊗̂K, B ⊗̂K).

18.12.7. There is a product

⊗̂D : KKn(A1, B1 ⊗̂D)×KKm(D ⊗̂A2, B2)→ KKn+m(A1 ⊗̂A2, B1 ⊗̂B2).

This product is associative and functorial in all possible senses. The product
generalizes composition and tensor product of ∗-homomorphisms, cup and cap
products, tensor product of elliptic pseudodifferential operators, and the pairing
between K-theory and “K-homology”.

18.13. EXERCISES AND PROBLEMS

18.13.1. Combine 18.4.2(c) and 18.11.1 to give a simplified proof of associativity
of the intersection product in the trivially graded case, as follows.

(a) Let (φ(0)
1 , φ

(1)
1 ) be a quasihomomorphism from A to D1. By adding on a

degenerate quasihomomorphism, we may assume that φ(0)
1 (A) ∩ (D1 ⊗ K) = 0.

So C1 = φ
(0)
1 (A) + (D ⊗K) = φ

(1)
1 (A) + (D ⊗K) ⊆Ms(D1) is a split extension

of φ(0)
1 (A) by D ⊗K.

(b) If (φ(0)
2 , φ

(1)
2 ) is a quasihomomorphism from D1 to D2, then (φ(0)

2 , φ
(1)
2 ) can

be extended to a quasihomomorphism, also denoted (φ(0)
2 , φ

(1)
2 ), from C1 to D2

by 18.11.1 and 18.11.2. Then by 18.4.2(c) the intersection product is represented
by the quasihomomorphism (φ(0)

2 ◦ φ
(0)
1 ⊕ φ

(1)
2 ◦ φ

(1)
1 , φ

(1)
2 ◦ φ

(0)
1 ⊕ φ

(0)
2 ◦ φ

(1)
1 ).

(c) By adding on more degenerates, we may assume φ(0)
2 (C1) ∩ (D2 ⊗ K) = 0,

so C2 = φ
(0)
2 (C1) + (D2 ⊗ K) is a split extension of (D2 ⊗ K). If (φ(0)

3 , φ
(1)
3 ) is

a quasihomomorphism from D2 to B, extend to a quasihomomorphism from C2

to B, also denoted (φ(0)
3 , φ

(1)
3 ). Then both intersection products(

[φ(0)
1 , φ

(1)
1 ] ⊗̂D1 [φ(0)

2 , φ
(1)
2 ]
)
⊗̂D2 [φ(0)

3 , φ
(1)
3 ]

and
[φ(0)

1 , φ
(1)
1 ] ⊗̂D1

(
[φ(0)

2 , φ
(1)
2 ] ⊗̂D2 [φ(0)

3 , φ
(1)
3 ]
)

are represented by the quasihomomorphism(
φ

(0)
3 ◦ φ

(0)
2 ◦ φ

(0)
1 ⊕ φ

(0)
3 ◦ φ

(1)
2 ◦ φ

(1)
1 ⊕ φ

(1)
3 ◦ φ

(1)
2 ◦ φ

(0)
1 ⊕ φ

(1)
3 ◦ φ

(0)
2 ◦ φ

(1)
1 ,

φ
(1)
3 ◦ φ

(0)
2 ◦ φ

(0)
1 ⊕ φ

(1)
3 ◦ φ

(1)
2 ◦ φ

(1)
1 ⊕ φ

(0)
3 ◦ φ

(1)
2 ◦ φ

(0)
1 ⊕ φ

(0)
3 ◦ φ

(0)
2 ◦ φ

(1)
1

)
.



186 VIII. KASPAROV’S KK-THEORY

18.13.2. Define a new equivalence relation on Kasparov modules as follows.

(a) Let T = C∗(u) be the Toeplitz algebra (9.4.2), and T ′ the subalgebra of
T ⊕ T generated by w = u⊕ u∗. Let λ : T ′ → C be the homomorphism sending
w to 1, and let Î = kerλ. Define j0, j1 : C → Î by j0(1) = (1−uu∗)⊕0 = 1−ww∗
and j1(1) = 0⊕ (1− u∗u) = 1− w∗w. Give Î the trivial grading.

(b) If u is represented in the standard way on l2(N), then T ′ is naturally iso-
morphic to the subalgebra of B(l2(Z)) generated by the bilateral shift and K.
Hence there is an essential split extension

0→ K → Î → C0(R)→ 0

j0 and j1 map C onto orthogonal one-dimensional projections, so j0 and j1 are
homotopic.

(c) Two Kasparov (A,B)-modules (E0, φ0, F0) and (E1, φ1, F1) are said to be
cohomotopic if there is (E, φ, F ) ∈ E(A ⊗̂ Î , B) with j∗i (E, φ, F ) ≈u (Ei, φi, Fi)
for i = 0, 1. Let ∼ch be the equivalence relation generated by cohomotopy and
addition of unitarily equivalent elements.

(d) From (b) we have that cohomotopy implies homotopy. On the other hand,
if β = (E, φ, F ′) is a “compact perturbation” of α = (E, φ, F ), then the mod-
ule (E ⊕ E,ψ, F ⊕ F ′) is a cohomotopy between α and β, where ψ(a ⊗ 1) =
diag(φ(a), φ(a)) and ψ(1 ⊗ w) =

[
0
1

0
0

]
. Thus ∼ch is stronger than ∼c and

weaker than ∼h, so if A is separable and B σ-unital ∼ch coincides with ∼c, ∼oh,
∼h.

Cohomotopy was introduced by Cuntz and Skandalis [1986] in an attempt
to reverse the asymmetric roles of A and B in KK(A,B). This asymmetry
is illustrated, for example, by the much greater difficulty of the second Puppe
sequence (19.4.3) compared to the first one. There is a “dual Puppe sequence”
[Cuntz and Skandalis 1986, 4.2].

18.13.3. [Cuntz 1987] (a) If A is a C∗-algebra, let qA be as in 10.11.13, and
inductively let qnA = q(qn−1A). Prove:

Theorem. If A is separable, then there is a ∗-homomorphism φ : qA→M2(q2A)
such that φ ◦ π0 is homotopic to jq2A and π

(2)
0 ◦ φ is homotopic to jqA. [Here

jB : B → M2(B) sends x to diag(x, 0), π0 : q2A → qA is as in 10.11.13, and
π

(2)
0 = π0⊗ idM2 : M2(q2A)→M2(qA).] So up to stabilization by 2×2 matrices,
q2A is homotopy equivalent to A. In particular , q2A⊗K is homotopy equivalent
to qA⊗K.

(b) Using this theorem, the isomorphism KK(A,B) ∼= [qA, B⊗K] (17.6.3), and
the isomorphism [A,B ⊗ K] ∼= [A ⊗ K, B ⊗ K] valid for any A, B, the natural
composition

[qA, B ⊗K]× [qB, C ⊗K]→ [q2A,C ⊗K]
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given by [φ][ψ] = [(ψ ⊗ idK) ◦ qφ] gives an associative product KK(A,B) ×
KK(B,C) → KK(A,C) for separable trivially graded A,B,C. Show that this
coincides with the Kasparov product.

This approach gives perhaps the most natural and straightforward way of
defining the KK-groups, constructing the product, and proving its properties.
It should be noted, however, that although this approach is overall technically
much simpler than the approach we have presented in the text, the proof of the
crucial Theorem 18.13.3 is not elementary and relies on an application of G.
Pedersen’s derivation lifting theorem [1979, 8.6.15] which is related to, and of
comparable difficulty to, Kasparov’s Technical Theorem.

19. Further Structure in KK-Theory

In this section, we use the intersection product to develop all the further
properties of the KK-groups.

We will always assume, often without explicit mention, that all C∗-algebras
considered satisfy the appropriate size restrictions (separable or σ-unital) nec-
essary to define the relevant products. Readers not interested in the utmost
generality may simply require all C∗-algebras to be separable.

To conserve space, we will let S and C denote the (trivially graded) C∗-
algebras C0(R) ∼= C0((0, 1)) and C0([0, 1)) respectively. [Do not confuse C with
the complex numbers C.]

19.1. KK-Equivalence

The important notion of KK-equivalence is basic both in this section and in
Chapter IX.

Definition 19.1.1. An element x ∈ KK(A,B) is a KK-equivalence if there is
y ∈ KK(B,A) with xy = 1A, yx = 1B . A and B are KK-equivalent if there
exists a KK-equivalence in KK(A,B).

If x ∈ KK(A,B) is a KK-equivalence, then for any D, x ⊗̂B ( · ) : KK(B,D)→
KK(A,D) and ( · ) ⊗̂A x : KK(D,A) → KK(D,B) are isomorphisms; these
isomorphisms are natural in D by associativity. So KK-equivalent C∗-algebras
“behave identically” with regard to KK-theory. In particular, if A and B are
trivially graded, right multiplication by x gives an isomorphism from Ki(A) ∼=
KKi(C, A) to Ki(B) ∼= KKi(C, B), and left multiplication by y gives an iso-
morphism from Ext i(A)−1 ∼= KKi(A,C) to Ext i(B)−1 ∼= KKi(B,C).

If x ∈ KK(A,B) is a KK-equivalence with inverse y, then y ⊗̂A ( · ) ⊗̂A x is
a ring-isomorphism from KK(A,A) onto KK(B,B).

Note that the notion of KK-equivalence is only defined for separable C∗-
algebras.

Examples 19.1.2. (a) For any A, A, Mn(A), and A ⊗̂K are all KK-equivalent
(17.8.8).
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(b) Homotopy-equivalent C∗-algebras are KK-equivalent in the obvious way.

(c) If A and B are KK-equivalent (via x), then for any D A ⊗̂ D and B ⊗̂ D
are KK-equivalent (via τD(x) ).

(d) If 0→ A→ D → B → 0 is a split exact sequence of C∗-algebras, then D is
KK-equivalent to A⊕B by 19.9.1.

(e) If A and B are AF algebras, then A and B are KK-equivalent if and only
if their dimension groups are isomorphic as abstract groups, ignoring the order
structure (23.15.2).

(f) The argument in 9.4.2 shows that the Toeplitz algebra T is KK-equivalent
to C : q ∈ KK(T,C) is a KK-equivalence, with inverse j ∈ KK(C, T ). More
generally, B and B⊗ T are KK-equivalent for any B. Another generalization is
given in 19.9.2.

(g) The argument in 10.11.11 shows that if A ∗D B is an amalgamated free
product, and there are retractions of A and B onto D, then A ∗D B is KK-
equivalent to the pullback P = A⊕D B. In fact, k ∈ KK(A ∗D B,P ) is a KK-
equivalence with inverse f−g. In particular, C∗(F2) is KK-equivalent to C(X2),
where X2 is a figure 8, and more generally C∗(Fn) is KK-equivalent to C(Xn),
where Xn consists of n circles joined at a point (the one-point compactification
of the disjoint union of n copies of R). The condition that there are retractions
onto D can be relaxed [Germain 1997].

(h) For many locally compact groups G, including free groups, the quotient
map λ : C∗(G) → C∗r (G) is a KK-equivalence (20.9). So C∗r (Fn) is also KK-
equivalent to C(Xn).

(i) If A is any (separable) C∗-algebra, and qA is as in 10.11.13, then the KK-
element in KK(qA,A) corresponding to π0 : qA→ A is a KK-equivalence.

Later in this section we will give more important examples of KK-equivalence.
We will show in Chapter IX that KK-equivalence is quite weak. In fact,

for “nice” trivially graded A and B, A and B are KK-equivalent if and only if
Ki(A) ∼= Ki(B) for i = 0, 1 (Universal Coefficient Theorem).

A C∗-algebra A is called K-contractible if KK(A,A) = 0. This implies that
KK(A,B) = KK(B,A) = 0 for all B.

Examples 19.1.3. (a) Any contractible C∗-algebra is K-contractible. In par-
ticular, CB = C0([0, 1), B) is K-contractible for any B.

(b) If 0 −→ J −→ A
q−→ A/J −→ 0 is an exact sequence of graded C∗-algebras

for which the exact sequence of KK-theory in either variable holds (19.5.7), and
if the quotient map is a KK-equivalence, then J is K-contractible. In particular,
if T0 = C∗(u− 1) is as in 9.4.2, then B ⊗̂ T0 is K-contractible for any B.
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19.2. Bott Periodicity

We define x ∈ KK(C1, S) and y ∈ KK(S,C1) as follows. To define x, regard
KK(C1, S) as KK1(C, S) ∼= Ext(C, S). Then x is represented by the extension

0→ S → C → C → 0

We may alternately interpret x as the element of K1(S) corresponding to the
unitary u(t) = e2πit for 0 < t < 1.

y ∈ KK1(S,C) ∼= Ext(S) is the extension

0→ K → C∗(v − 1)→ S → 0

where v is a coisometry of Fredholm index 1, e.g. the adjoint of the unilateral
shift. (The homomorphism τ : S → Q sends f to q(v)−1, where f(t) = e2πit−1.)

We know from earlier sections that KK1(C, S) and KK1(S,C) are both iso-
morphic to Z and that x and y are generators; but we will not need to make use
of this fact.

Theorem 19.2.1. x is a KK-equivalence, with inverse y.

Corollary 19.2.2 (Bott Periodicity). For any A and B, we have

KK1(A,B) ∼= KK(A,SB) ∼= KK(SA,B)

and KK(A,B)∼=KK1(A,SB)∼=KK1(SA,B)∼=KK(S2A,B)∼=KK(A,S2B)∼=
KK(SA, SB). The isomorphisms are induced by intersection product with a fixed
element , and are therefore natural in A and B.

Proof. Follows immediately from 19.2.1 and 17.8.9. �

Corollary 19.2.3. For any A, A and S2A are KK-equivalent . In particular ,
C and C0(R2) are KK-equivalent .

Of course, the Bott Periodicity Theorem of K-theory is a special case of 19.2.2.
19.2.2 also implies Bott Periodicity for Ext (at least for those C∗-algebras for
which Ext is a group).

We will prove the theorem in stages. We first show that xy = 1C1 . Then
we will give an argument using Bott Periodicity for K-theory to conclude that
yx = 1S . Then in the course of proving the Thom Isomorphism we will give
another proof that yx = 1S not depending on K-theory Bott periodicity, thus
giving a self-contained treatment.

Lemma 19.2.4. We have xy = 1C1 .

Proof. This follows immediately from 18.10.2 and 17.8.9. Note that the ap-
plication of the argument of 18.10.2 does not depend on the identification of
KK1(C, S) with K1(S) using K-theory Bott Periodicity. �
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It is not too difficult to calculate yx if the elements are expressed in terms of
Dirac operators (19.9.3). But since Dirac operators and geometric arguments are
foreign to operator algebraists such as the author and many potential readers,
we will give an argument which completely eliminates the need to calculate yx.

It follows immediately from 19.2.2 that yx is a nonzero idempotent in the
ring KK(S, S). The proof of 19.2.1 would be complete if we could show that 1S
is the only nonzero idempotent in this ring.

If we assume we know K1(S) = Z (which requires K-theory Bott periodicity),
along with the K-theory exact sequence and 12.2.1, we can give an argument
as follows. From 17.5.7 it follows that KK1(S, S2) ∼= K1(Qs(S2)) ∼= K0(S2) ∼=
K1(S) ∼= Z. The map KK(S, S) ∼= KK1(S, S ⊗̂ C1) → KK1(S, S2) ∼= Z
obtained by right multiplication by x is injective by 19.2.4, so KK(S, S) is a
cyclic group and thus as a ring must have only one nonzero idempotent.

19.2.5. If xn = x⊗̂· · ·⊗̂x ∈ KK(C1⊗̂· · ·⊗̂C1, S⊗̂· · ·⊗̂S) = KK(Cn, C0(Rn)) ∼=
Kn(C0(Rn)) and similarly yn = y ⊗̂ · · · ⊗̂ y ∈ Kn(C0(Rn)), then we have
xn ⊗̂C0(Rn) yn = 1Cn and yn ⊗̂Cn xn = 1C0(Rn). If n = 2, we get an invertible
element x2 ∈ K0(C0(R2)) called the Bott element. It can be explicitly described
as a quasihomomorphism (φ(0), φ(1)) from C to M2(C0(R2)) by setting φ(0)(1) =
p, φ(1)(1) = q, where p and q are defined in 9.2.10. The Bott map of 9.1 is given
by intersection product with the Bott element.

19.2.6. If A and B are trivially graded, we may further identify KK(A,B) ∼=
KK1(A,SB) with Ext(A,SB)−1. There is a nice description of the extension
corresponding to an element z of KK(A,B): represent z by a Kasparov module(
HB ⊕Hop

B , φ
(0) ⊕ φ(1),

[
0
1

1
0

])
as in the Cuntz picture, and then the extension

corresponds to “putting A at each end” of S(B⊗K) via φ(0) and φ(1) respectively.
More specifically, the map φ : A→ C([0, 1], M(B⊗K)) ⊆M(S(B⊗K)) defined
by [φ(a)](t) = tφ(1)(a) + (1 − t)φ(0)(a) drops to a ∗-homomorphism from A

to Qs(SB) and hence defines an (invertible) extension of A by SB ⊗ K. The
connecting maps from Ki(A) to K1−i(SB) ∼= Ki(B) are just the maps induced
by right multiplication by z.

19.3. Thom Isomorphism

Just as in the case ofK-theory, Bott Periodicity has a generalization to crossed
products by R. The result is called the “Thom Isomorphism”, although it is
actually the KK generalization of Connes’ analog of the Thom Isomorphism of
algebraic topology (10.2.2). This result is due to Fack and Skandalis [1981]. For
a true generalization of the topological Thom isomorphism, see 19.9.4.

The Thom Isomorphism can be defined and its properties proved only using
19.2.4 and not the full force of Bott Periodicity; as a special case we obtain the
full Bott Periodicity theorem. The proof of the Thom Isomorphism for KK is
actually simpler and more elegant than the proof for K-theory, now that we have
the powerful machinery of Section 18.
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In this subsection, we work only with trivially graded C∗-algebras.
Recall that if α is a continuous action of R on A, then there are canonical

homomorphisms φ and ψ from A and C∗(R) ∼= S, respectively, into M(A×αR).
If f is any bounded complex-valued continuous function on R, thought of as an
element of M(C∗(R)), then f defines a multiplier Ff of A ×α R in the evident
way. (To prove this, note that linear combinations of elements of the form
φ(a) · ψ(g), where a ∈ A and g ∈ C∗(R), are dense in A ×α R, and similarly
linear combinations of elements of the form ψ(g) · φ(a) are dense.)

Definition 19.3.1. If f is a continuous complex-valued function on R for
which limt→+∞ f(t) = 1 and limt→−∞ f(t) = −1, the corresponding element
Ff ∈M(A×α R) is called a Thom operator on A×α R.

Any two Thom operators differ by an element of C∗(R), so if Ff and Fg are
Thom operators, then (Ff − Fg)φ(a) ∈ A×α R for all a ∈ A.

Proposition 19.3.2. If Ff is a Thom operator , then [Ff , φ(A)] ⊆ A×α R.

Proof. If the result is true for one Thom operator, it is true for all. Choose f
to be the function f(s) = 1

π

∫ s
−s

sin t
t dt. Then f is the Fourier transform of the

function g, where g(t) = i/t for |t| ≤ 1, g(t) = 0 for |t| > 1. So if A ×α R is
represented as the completion of the twisted convolution algebra L1(R, A), and
a ∈ A is C∞ for the action, we have that [Tf , φ(a)] = h, where

h(t) =

 i
a− αt(a)

t
for |t| ≤ 1,

0 for |t| > 1.

We have h ∈ L1(R, A) ⊆ A×α R. Such a are dense in A. �

So (A×αR, φ, Ff ) can be identified with a Kasparov (A, (A×αR)⊗̂C1)-module
as in 17.6.4; such a Kasparov module is called a Thom module for α. Any two
such modules are “compact perturbations” by the remark after 19.3.1.

Definition 19.3.3. The class of (A×α R, φ, Ff ) in KK1(A, A×α R) is called
the Thom element of (A,α), denoted tα.

Examples 19.3.4. (a) Let A = C, α = ι the trivial action. Then C ×ι R ∼=
C0(R). If C0(R) is identified with C0(0, 1) by identifying +∞ with 0 and −∞
with 1, tι = x of 19.2.

(b) Let A = C0(R), ι̂ the action of R on C0(R) by translation. Then A×ι̂R ∼= K
by Takai duality (or by the Heisenberg commutation relations). The element tι̂
of KK1(C0(R),K) corresponds to the element y ∈ KK(S,C1) of 19.2.

Proposition 19.3.5. (a) If g : (A,α) → (B, β) is an equivariant homomor-
phism, inducing the homomorphism h : A ×α R → B ×β R, then h∗(tα) =
g∗(tβ).
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(b) If γ is the action α⊗ 1 on A⊗B, then

tγ = tα ⊗̂ 1B = τB(tα)

in KK1(A⊗B, (A⊗B)×γ R) ∼= KK1(A⊗B, (A×α R)⊗B).
(c) If (A×α R)×α̂ R is identified with A⊗K in the standard way using Takai

duality , then t ˆ̂α = tα ⊗̂ 1K .

Proof. Obvious. �

Theorem 19.3.6 (Thom Isomorphism). If A is a separable trivially graded
C∗-algebra with a continuous action α of R, then A ×α R is KK-equivalent to
SA. The element tα is an isomorphism.

The key technical lemma in the proof is the following.

Lemma 19.3.7. Let α be an action of R on a separable C∗-algebra A, and
let α̂ be the dual action on A ×α R. Then the element uα = tα ⊗̂A×αR tα̂ of
KK(A, (A×α R)×α̂ R) ∼= KK(A, A⊗K) ∼= KK(A,A) is independent of α.

Proof. Define an action β of R on IA by [βt(φ)](s) = αst(φ(s)). If fs : IA →
A is evaluation at s, then fs is an equivariant homomorphism from (IA, β)
to (A,αs), where αst = αst. α1 = α, and α0 = ι, the trivial action. Let
gs : IA ×β R → A ×αs R and hs : (IA ×β R) ×β̂ R → (A ×αs R) ×α̂s R be
the induced homomorphisms from fs. As a homomorphism from IA ⊗ K to
A⊗K under the standard identifications of Takai duality, we have hs = fs ⊗ 1.
Thus h0 and h1 are homotopic as homomorphisms from IA ⊗ K to A ⊗ K, so
vs = hs∗(uβ) ∈ KK(IA, A⊗K) is independent of s.

We have gs∗(tβ) = f∗s (tαs) and hs∗(tβ̂) = g∗s (tα̂s). So vs = tβ ⊗̂IA×βR

hs∗(tβ̂) = tβ ⊗̂IA×βR g∗s (tα̂s) = gs∗(tβ) ⊗̂A×αsR tα̂s = f∗s (tαs) ⊗̂A×αsR tα̂s =
f∗s (vs) by functoriality. If d : A→ IA embeds A as constant functions, we have
fs ◦ d = 1A, so uαs = d∗(f∗s (tαs)) ⊗̂A×αsRtα̂s = d∗(vs) is independent of s.
[Informally, a Kasparov product of Thom modules representing d∗(tβ) and tβ̂
gives a homotopy between a Kasparov product of Thom modules representing
tα and tα̂ and a Kasparov product of Thom modules representing tι and tι̂.] �

Lemma 19.3.8. For any action α on a separable trivially graded C∗-algebra A,
we have uα = 1A.

Proof. In light of 19.3.7, we need only show that uι = 1A. But under the
decomposition A = A⊗ C, tι becomes 1A ⊗̂ x, tι̂ becomes 1A ⊗̂ y by 19.3.4(a)
and (b); thus uι = 1A ⊗̂ xy = 1A by 19.2.4. �

Proof of 19.3.6.. From 19.3.8 tα has a right inverse, namely tα̂. But we may
identify tα with t ˆ̂α as in 19.3.5(c); t ˆ̂α has tα̂ as left inverse. �

Note that we have finished the proof of Bott Periodicity as a special case of
19.3.6; the proof of 19.3.6 does not use full Bott periodicity for KK or Bott
periodicity of K-theory—it only uses 19.2.4.
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One reason that the proof of the Thom isomorphism works so much more
simply for KK than for K-theory, besides the power of the intersection product,
is the fact that buried in the proof is use of the equality of ∼c and ∼h: KK-
elements are regarded as extensions, where the natural equivalence relation is
∼c, but ∼h was used in an essential way in the proof of 19.3.7. The proof for
KK could be adapted for K-theory, but one would essentially have to prove an
analog of the agreement of the two equivalence relations.

We have the following corollary of the Thom isomorphism:

Corollary 19.3.9. Let G be a simply connected solvable Lie group, α a con-
tinuous action on a separable (trivially graded) C∗-algebra A. Then A ×α G is
KK-equivalent to A if dim(G) is even, and to SA if dim(G) is odd .

19.4. Mapping Cones and Puppe Sequences

We introduce some notions which are generalizations of some important stan-
dard constructions of topology.

Definition 19.4.1. (a) If A is a (graded) C∗-algebra, the cone of A, denoted
CA, is the (graded) C∗-algebra A ⊗̂C ∼= C0([0, 1), A) (with the obvious grad-
ing).

(b) If φ : A → B is a (graded) ∗-homomorphism, then the mapping cone of φ,
denoted Cφ, is the (graded) C∗-subalgebra {(x, f) | φ(x) = f(0)} of A⊕CB.

The mapping cone construction is an important example of a pullback (15.3).
There are maps p : Cφ → A and i : SB → Cφ given by p(x, f) = x, i(f) =

(0, f). (We identify SB with C0((0, 1), B).) There is a standard short exact
sequence

0 −→ SB
i−→ Cφ

p−→ A −→ 0

associated to Cφ. The mapping cone construction is natural in A and B, i.e. if
we have a commutative diagram

A1
φ - B1

A2

?
f

ψ - B2

?
g

there is a map ω : Cφ → Cψ making the following diagram commutative:

0 - SB1
- Cφ - A1

- 0

0 - SB2

?
Sg

- Cψ
?
ω

- A2

?
f

- 0

Examples 19.4.2. (a) C1A
∼= CA; CSφ ∼= SCφ for any φ.
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(b) If A, B, φ, Cφ, and p are as above, then Cp is isomorphic to the C∗-
subalgebra {(f, g) | φ(f(0)) = g(0)} of CA⊕ CB. The map j : SB → Cp given
by j(g) = (0, g) is a homotopy equivalence, with homotopy inverse ψ : Cp → SB

given by

ψ(f, g)(t) =

{
g(2t− 1) for 1

2 ≤ t < 1

φ(f(1− 2t)) for 0 < t ≤ 1
2 .

(c) If A, B, φ, Cφ, and i are as above, then Ci is isomorphic to the subalgebra
{(f, g) | φ(f(t)) = g(0, t)} of SA ⊕ C0([0, 1] × (0, 1), B). To show this, work
through the intermediate algebra

{(f, g) | φ(f(t)) = g(0, t)} ⊆ SA⊕ C0([0, 1)× [0, 1) \ {0, 0}, B).

The map q : Ci → SA defined by q(f, g) = f is a homotopy equivalence with
homotopy inverse ω : SA→ Ci defined by ω(f) = (f, g), where g(s, t) = φ(f(s)).

Theorem 19.4.3 (Puppe Sequences). Let A, B, D be graded C∗-algebras
and φ : A → B a graded ∗-homomorphism. Then the following sequences are
exact :

KK(D,SA)
Sφ∗−→ KK(D,SB) i∗−→ KK(D,Cφ)

p∗−→ KK(D,A)
φ∗−→ KK(D,B)

KK(B,D)
φ∗−→ KK(A,D)

p∗−→ KK(Cφ, D) i∗−→ KK(SB,D)
Sφ∗−→ KK(SA,D)

Lemma 19.4.4. Let A, B, D, φ be as in 19.4.3. Then the following short
sequences are exact in the middle:

KK(D,Cφ)
p∗−→ KK(D,A)

φ∗−→ KK(D,B)

KK(B,D)
φ∗−→ KK(A,D)

p∗−→ KK(Cφ, D)

Proof. For the first sequence, let (E0, ψ0, F0) ∈ E(D,A), and suppose that
φ∗(E0, ψ0, F0) = 0 in KK(D,B). Then there exists (Ē, ψ, F̄ ) ∈ E(D, IB) with
f0∗(Ē, ψ, F̄ ) = φ∗(E0, ψ0, F0) and f1∗(Ē, ψ, F̄ ) is the 0-module. Then (E0 ⊕
Ē, ψ0 ⊕ ψ,F0 ⊕ F̄ ) is a Kasparov (D,Cφ)-module in the obvious way, and its
image under p∗ is (E0, ψ0, F0). Conversely, if l is the obvious projection of Cφ
onto CB, and (E,ψ, F ) ∈ E(D,Cφ), then l∗(E,ψ, F ) gives a homotopy from
(φ ◦ p)∗(E,ψ, F ) to the 0-module. Therefore the first sequence is exact.

The second sequence is harder. We first show p∗ ◦ φ∗ = 0. If p0 : CB → B is
evaluation at 0 and l is as above, we have φ ◦ p = p0 ◦ l. But CB is contractible,
so p∗0 = l∗ = 0, p∗ ◦ φ∗ = (φ∗p)∗ = (p0 ◦ l)∗ = l∗ ◦ p∗0 = 0.

To show that ker p∗ ⊆ imφ∗, let (E,ψ, F ) ∈ E(A,D), and suppose that
p∗[(E,ψ, F )] = 0 in KK(Cφ, D). Then there is a Kasparov (Cφ, CD)-module
(Ē, ψ, F̄ ) with f0∗(Ē, ψ, F̄ ) = p∗(E,ψ, F ). Let Ẽ be the kernel of the map f0∗ :
Ē → p∗(E). (Ẽ consists of elements of Ē which “vanish at 0”.) Ẽ is a submodule
of Ē, and the elements of B(Ē) leave Ẽ fixed (since SD is an ideal in CD). Let
F̃ be the restriction of F̄ to Ẽ. Let ω = ψ ◦ i : SB → Cφ → B(Ē) → B(Ẽ).
Since p ◦ i = 0, ω(SB) · Ē ⊆ Ẽ. It follows that (Ẽ, ω, F̃ ) ∈ E(SB, SD).
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We define a Kasparov (SA, SD)-module (Ê, ψ̂, F̂ ) as follows. Realize S as
C0((−1, 1)), so SA = C0((−1, 1), A) etc. Let Ê = {(ξ, η) | ξ(0) = f0∗(η)} ⊆
C0((−1, 0], E)⊕Ē. Ê is a Hilbert C0((−1, 1), D)-module in the obvious way. Let
π : CA→ Cφ be the obvious quotient map. If g ∈ SA, let ψ̂(g) be the operator
on Ê defined by letting g |(−1,0] act on C0((−1, 0], E) pointwise via ψ, and letting
g |[0,1) act on Ē via ψ ◦ π. Let F̂ = 1⊗ F ⊕ F̄ . Then (Ê, ψ̂, F̂ ) ∈ E(SA, SD).

Since the inclusions of C0((−1, 0)) and C0((0, 1)) into C0((−1, 1)) are ho-
motopy equivalences, the Kasparov (SA, SD)-modules obtained by restricting
(Ê, ψ̂, F̂ ) to C0((−1, 0), A) and C0((0, 1), A) are homotopic. The restriction of
(Ê, ψ̂, F̂ ) to C0((−1, 0), A) is τS(E,ψ, F ), and the restriction to C0((0, 1), A) is
(Sφ)∗(Ẽ, ω ˜, F ).
τS is an isomorphism by Bott periodicity; if x is the inverse image of the class

of (Ẽ, ω, F̃ ) in KK(B,D), then the class of (Sφ)∗(Ẽ, ω, F̃ ) is (Sφ)∗(τS(x) =
τS(φ∗(x)). Thus the class of τS(E,ψ, F ) is τS(x), i.e. the class of (E, φ, F ) is
x. �

Proof of 19.4.3. Exactness at A follows from 19.4.4. To prove exactness
at Cφ, apply 19.4.4 to the sequences KK(D,Cp) → KK(D,Cφ) → KK(D,A)
and KK(A,D) → KK(Cφ, D) → KK(Cp, D) and note that the inclusion j :
SB → Cp is a homotopy equivalence by 19.4.2(b). Similarly, to prove exactness
at SB consider the sequences KK(D,Ci) → KK(D,SB) → KK(D,Cφ) and
KK(Cφ, D) → KK(SB,D) → KK(Ci, D) and use 19.4.2(c). It is routine to
check that the maps match up properly. The rest of the sequence follows from
suspension and Bott periodicity. �

19.5. Exact Sequences

We will now use the Puppe sequences to derive six-term cyclic exact sequences
in each variable for the KK-groups corresponding to a short exact sequence of
C∗-algebras.

Exact sequences in KK-theory do not hold in general (19.9.8), and the precise
necessary and sufficient conditions for their existence are not known. We can
only derive the sequences under the assumption that the quotient map in the
exact sequence has a completely positive cross section.

Definition 19.5.1. An exact sequence

0 −→ J
j−→ A

q−→ A/J −→ 0

of graded C∗-algebras is semisplit if there exists a completely positive, norm-
decreasing, grading-preserving cross section for q. J is said to be a semisplit
ideal in A.

Semisplit ideals are exactly the ideals corresponding to invertible extensions
(15.7.1).

Examples 19.5.2. (a) If A is nuclear, then every ideal of A is semisplit (15.8.3).
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(b) If φ : A→ B is a graded homomorphism, then the mapping cone sequence

0 −→ SB −→ Cφ −→ A −→ 0

is semisplit: the map ψ(a) = (a, (1−t)φ(a)) is a cross section.

Lemma 19.5.3. Let A be a separable graded C∗-algebra, J a graded ideal in A.
If J is semisplit in A, then SJ is semisplit in CA.

Proof. Let φ be a completely positive grading-preserving cross section from
B = A/J to A for the quotient map π : A→ B, and let (ut), for 0 < t < 1 be a
path in J (0) with 0 ≤ ut ≤ 1, limt→1 ut = 0, such that (ut) forms a quasicentral
approximate identity for J as t→ 0. Set u0 = 1, and vt = (1− u2

t )
1/2.

Let (a0, (bt)) ∈ CA/SJ ∼= Cπ. Then a0 ∈ A, bt (0 ≤ t < 1) ∈ B, and
π(a0) = b0. Define ψ(a0, (bt)) ∈ CA by

[ψ(a0, (bt))](s) = usa0us + vsφ(bs)vs

The only nontrivial step in checking that ψ is a completely positive grading-
preserving cross section for the quotient map from CA to CA/SJ is to show
that ψ(a0, (bt)) is actually in CA, i.e. that ψ(a0, (bt)) is continuous at 0. To
show this, note that a0 − φ(b0) = c ∈ J , so lims→0 a0 − φ(bs) = c. So

lim
s→0

[vs(a0 − φ(bs))vs − vscvs] = 0,

since (vs) is bounded. We have lims→0 vscvs = 0, so lims→0 vs(a0−φ(bs))vs = 0,

lim
s→0

([ψ(a0, (bt))](s)− [usa0us + vsa0vs]) = 0

But usa0us − a0u
2
s and vsa0vs − a0v

2
s approach 0 as s → 0 since (ut) is quasi-

central, so
lim
s→0

[ψ(a0, (bt))](s) = a0 = [ψ(a0, (bt))](0). �

Remark 19.5.4. Using the Technical Theorem one can prove the more general
result that if J and K are semisplit graded ideals in a separable graded C∗-
algebra, then J ∩K is also semisplit [Cuntz and Skandalis 1986, 2.2].

Theorem 19.5.5. Let A be a separable (graded) C∗-algebra, J a semisplit
(graded) ideal of A, q : A → A/J the quotient map. Let e : J → Cq be defined
by e(x) = (x, 0). Then e (regarded as an element e of KK(J,Cq)) is a KK-
equivalence.

Proof. The inverse of e is the element u of KK(Cq, J) ∼= KK1(Cq, SJ) repre-
sented by the extension

0 −→ SJ −→ CA
π−→ Cq −→ 0

as in 17.6.4. More specifically, if v ∈ KK1(Cq, SJ) is the element represented
by this extension, then u = v ⊗̂S (1J ⊗̂ y), where y is as in 19.2.1.

Lemma 19.5.6. eu = e∗(u) = 1J .
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Proof. From the diagram

0 - SJ - CJ
f0 - J - 0

0 - SJ

wwwww
- CA

?

p
- Cq
?
e

- 0

we conclude that ev = e∗(v) = 1J ⊗̂x, where x is as in 19.2.1. Thus eu = 1J . �

Proof of 19.5.5 (cont.). Let φ : CCq → Cq → C(A/J) be evaluation at
0 followed by the obvious quotient map. Then kerφ is semisplit (each of the
quotient maps making up φ has an obvious cross section), and is isomorphic to
Ce. Apply 19.5.6 to the exact sequence

0 −→ Ce → CCq
φ−→ C(A/J) −→ 0

to conclude that for any D, the map KK(D,Ce) → KK(D,Cφ) is injective.
However, by the first Puppe sequence we have that KK(D,Cφ) = 0 since CCφ
and SC(A/J) are contractible. Thus KK(D,Ce) = 0 for any D. Now apply
the first Puppe sequence to e to conclude that for any De∗ : KK(D,J) →
KK(D,Cq) is an isomorphism, i.e. e is an invertible element in KK(J,Cq).
Since u is a right inverse, it must be the inverse. �

As a corollary, we obtain the general six-term exact sequences for KK:

Theorem 19.5.7 (Six-Term Exact Sequence for KK). Let

0 −→ J
j−→ A

q−→ A/J −→ 0

be a semisplit short exact sequence of σ-unital graded C∗-algebras. Then, for
any separable graded D, the following six-term sequence is exact :

KK(D,J)
j∗- KK(D,A)

q∗- KK(D,A/J)

KK1(D,A/J)

δ
6

�q∗ KK1(D,A) �
j∗

KK1(D,J)
?
δ

If A is separable, then for any σ-unital graded C∗-algebra D the following six-
term sequence is exact :

KK(J,D) �
j∗

KK(A,D) �
q∗

KK(A/J,D)

KK1(A/J,D)

δ
?

q∗- KK1(A,D)
j∗- KK1(J,D)

6
δ

The map δ is multiplication by the element δq ∈ KK1(A/J, J) corresponding to
the extension. Under the identification of KK1(A/J, J) with KK(S(A/J), J),
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δq corresponds to i∗(u), where i is the natural inclusion of S(A/J) into Cq and
u ∈ KK(Cq, J) is the inverse of e : J → Cq (19.5.6).

Remark 19.5.8. The proof of 19.5.6 only requires Lemma 19.2.4 and the first
(easier) short Puppe sequence, which does not depend on Bott periodicity. Thus
one can obtain the six-term exact sequence in the second variable without full
Bott periodicity.

If one applies this exact sequence to 0 → K → C∗(v − 1) → S → 0, the
extension of 19.2.1 which defines y, and uses the fact that C∗(v − 1) is K-
contractible (19.1.3(b)), one obtains an alternate proof of full Bott periodicity.

Remark 19.5.9. Kasparov’s original proof of the KK-theory exact sequences
was rather different than the one given here. The argument used the isomor-
phism of KK1(A,B) and Ext(A,B)−1, and thus only works if all algebras are
trivially graded. There is one slight advantage to Kasparov’s approach, how-
ever: if the first variable is a fixed separable nuclear C∗-algebra, and all algebras
are trivially graded, then one obtains a six-term exact sequence in the second
variable even for extensions which are not semisplit. (The exact sequence in the
first variable requires semisplitness in any event.) A different proof of this more
general result can be obtained from E-theory (25.5.13, 25.6.3). The existence
of exact sequences in somewhat greater generality can be established using the
notion of K-nuclearity (20.10.2).

19.6. Pimsner–Voiculescu Exact Sequences

By essentially the same procedure as in Section 10, we can obtain six-term ex-
act sequences in each KK-variable separately corresponding to a crossed product
by Z.

If A is a trivially graded C∗-algebra and α ∈ Aut(A), we have an extension

0 −→ S(A⊗K) −→ (A×α Z)×α̂ R −→ A⊗K −→ 0

corresponding to the mapping torus construction. This exact sequence is always
“locally split”, hence semisplit. If we apply the exact sequences of KK-theory
and the Thom isomorphism, we obtain

Theorem 19.6.1. Let A be a trivially graded σ-unital C∗-algebra, α ∈ Aut(A).
Then if D is any separable graded C∗-algebra, the following six-term sequence is
exact :

KK(D,A)
1− α∗- KK(D,A) - KK(D,A×α Z)

KK1(D, A×α Z)

6

� KK1(D,A) �
1− α∗

KK1(D,A)
?
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If A is separable, then for any σ-unital graded C∗-algebra D, the following six-
term sequence is exact:

KK(A,D) �
1− α∗

KK(A,D) � KK(A×α Z, D)

KK1(A×α Z, D)
?

- KK1(A,D)
1− α∗- KK1(A,D)

6

See 19.9.2 for an alternate derivation of this sequence.

Remark 19.6.2. Similarly, we obtain analogs of the exact sequence of 10.6 for
T-actions and of 10.7.1 for Zn-actions.

19.7. Countable Additivity

We have seen (17.7) that KK is finitely additive in each variable. It is also
countably additive in the first variable; the proof requires the fact that ∼h=∼oh.
This result is due to Rosenberg [1987, 1.12].

Theorem 19.7.1. Let A =
⊕

iAi be a countable C∗-direct sum of separable C∗-
algebras. Then the coordinate inclusions gj : Aj → A induce an isomorphism
KK(A,B) ∼=

∏
KK(Ai, B).

Proof. The gj define a homomorphism θ =
∏
g∗i : KK(A,B)→

∏
KK(Ai, B).

To show that θ is surjective, let (Ei, φi, Fi) ∈ E(Ai, B). Let E be the “L2-direct
sum” of the Ei as Hilbert B-modules; then there is an evident ∗-homomorphism
φ = ⊕φi from A to B(E), and an operator F = ⊕Fi on E; (E, φ, F ) is a Kas-
parov (A,B)-bimodule since the intertwining relations only need to be checked
for elements in the algebraic direct sum of the Ai, and for each such element
everything happens inside a finite direct sum.

To prove injectivity, suppose (E, φ, F ) ∈ E(A,B) is in the kernel. By 18.6.1,
we may assume (E, φ, F ) extends to

⊕
A+
i , which is a split extension of A.

Let pi be the image of the identity of A+
i in B(E); then (E, φ, F ) is a “compact

perturbation” of
(⊕

piE, φ,
⊕
piFpi

)
⊕(degenerate). By adding on another de-

generate if necessary, we may assume that (piE, φi, piFpi) ∈ E(Ai, B) is operator
homotopic to a degenerate element. These operator homotopies may be added in
the strict topology of B

(⊕
piE

)
to give a homotopy from

(⊕
piE, φ,

⊕
piFpi

)
to a degenerate element. �

Note the delicate interplay between the various notions of equivalence for Kas-
parov modules in this proof.

19.7.2. KK is not countably additive in the second variable in general. If B =⊕
Bi, then for any A there is a natural map ω from

⊕
KK(A,Bi) to KK(A,B);

however, ω is not surjective in general. As an example, let A = B = c0, with
Bi = C. Then 1A ∈ KK(A,A) is not in the image.
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Using the Universal Coefficient Theorem, one can prove that if A is a “nice”
C∗-algebra with K∗(A) finitely generated, then KK(A, · ) is countably additive
(23.15.5).

19.8. Recapitulation

Let us once again summarize the principal facts we have proved about the
Kasparov groups.

19.8.1. KKn(n = 0, 1) is a homotopy-invariant bifunctor from pairs (A,B) of
graded C∗-algebras to abelian groups. This functor is well behaved only when A
is separable and B is σ-unital; throughout the rest of this subsection we assume
without mention that all C∗-algebras satisfy these size restrictions.

19.8.2. The elements of KKn(A,B) are equivalence classes of (A,B)-bimodules.
The bimodules considered may be expressed in various standard forms, for ex-
ample, in the Fredholm module picture (17.5), the Cuntz picture (17.6), the
Baaj–Julg picture (17.9), or as extensions (19.2.6). The equivalence relation
used is not at all critical; any equivalence relation weaker than ∼c and stronger
than ∼h will do.

19.8.3. If B is trivially graded, then KKn(C, B) is naturally isomorphic to
Kn(B) for n = 0, 1 (17.5.5, 17.5.6).

19.8.4. If A and B are trivially graded, then KK1(A,B) is naturally isomorphic
to Ext(A,B)−1. If A is nuclear, then KK1(A,B) is naturally isomorphic to
Ext(A,B).

19.8.5. KKn is a stable invariant in each variable, i.e. there are natural isomor-
phisms

KKn(A,B) ∼= KKn(A ⊗̂K, B) ∼= KKn(A,B ⊗̂K) ∼= KKn(A ⊗̂K, B ⊗̂K).

19.8.6. There is a product

⊗̂D : KKn(A1, B1 ⊗̂D)×KKm(D ⊗̂A2, B2)→ KKn+m(A1 ⊗̂A2, B1 ⊗̂B2).

This product is associative and functorial in all possible senses. The product
generalizes composition and tensor product of ∗-homomorphisms, cup and cap
products, tensor product of elliptic pseudodifferential operators, and the pairing
between K-theory and “K-homology”.

19.8.7. There are natural isomorphisms

KKn(A,B) ∼= KKn(SA, SB) ∼= KKn+1(A,SB) ∼= KKn+1(SA,B)

(addition mod 2) for any A and B.

19.8.8. If A is trivially graded and α is any action of R on A, then there are
natural isomorphisms KKn(A ×α R, B) ∼= KKn+1(A,B) and KKn(B, A ×α
R) ∼= KKn+1(B,A) for any B (addition mod 2).
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The natural isomorphisms of 19.8.5, 19.8.7, and 19.8.8 are implemented by
taking a product with a fixed KK-element.

19.8.9. For any semisplit extension of graded C∗-algebras, there are cyclic six-
term exact sequences in each variable (19.5.7).

19.8.10. KKn is countably additive in the first variable and finitely additive in
the second.

19.9. EXERCISES AND PROBLEMS

19.9.1. Let

0 - B
j
- D �

s

q
- A - 0

be a split short exact sequence of graded separable C∗-algebras. Show that
the element s ⊕ j ∈ KK(A ⊕ B,D) is a KK-equivalence with inverse q ⊕ πs
(17.8.2(d)). (Use the long exact sequence.)

19.9.2. Let A be a trivially graded unital C∗-algebra, α ∈ Aut(A), and T the
Toeplitz algebra generated by u (9.4.2). The generalized Toeplitz algebra of α,
denoted Tα, is the C∗-subalgebra of (A×α Z)⊗T generated by A⊗ 1 and v⊗u,
where v ∈ A ×α Z is the unitary implementing α. There is a semisplit exact
sequence

0→ A⊗K → Tα → A×α Z → 0.

(a) Let φ(0) be the embedding of Tα into Ms(A) corresponding to this exten-
sion, and let φ(1)(t) = (1 ⊗ u)φ(0)(t)(1 ⊗ u∗) for t ∈ Tα. Then (φ(0), φ(1)) is a
quasihomomorphism from Tα to A; let x be its class in KK(Tα, A).

(b) Let j : A → Tα be defined by j(a) = a ⊗ 1, and j ∈ KK(A, Tα) the
corresponding element. Show by an argument similar to 9.4.2 that j is invertible
with inverse x [Cuntz 1984, 5.5].

(c) Let h be the inclusion A → A ⊗ K → Tα as in 17.8.2(b). Show that hx =
1A − [α−1] ∈ KK(A,A) [Cuntz 1984, 5.6].

(d) Apply the KK-theory exact sequences to the exact sequence above to obtain
an alternate proof of the Pimsner–Voiculescu exact sequence.

This is a refined version (due to Cuntz) of the original argument of Pimsner
and Voiculescu for the K-theory exact sequence.

19.9.3. Represent the xn and yn of 19.2 as follows [Kasparov 1980b, § 5].

(a) For xn, regard C0(Rn) ⊗̂Cn as the algebra of continuous functions from Rn

to the Clifford algebra of Cn. The function f : Rn → Cn defined by f(x) =
x(1+‖x‖2)−1/2 gives a multiplier Fn of C0(Rn)⊗̂Cn, and the module (C0(Rn)⊗̂
Cn, 1, Fn) represents xn ∈ KK(C, C0(Rn) ⊗̂ Cn). This representation of x2

exactly gives the Bott element described in 19.2.5.
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(b) For yn, let d be the operator of exterior differentiation on H = L2(CRn), δ
its adjoint. Then d+ δ defines an essentially self-adjoint unbounded operator of
degree 1 on H (graded by degrees), and if C0(Rn) ⊗̂Cn acts by Clifford multipli-
cation µ, then (H, µ, d+δ) defines an unbounded Kasparov module (17.11). If an
ordinary Kasparov module is desired, let ∆ = dδ + δd be the Laplace operator,
and F̂n = (d+ δ)(1 + ∆)−1/2. (H, µ, F̂n) represents yn.

(c) Calculate xn ⊗̂C0(Rn) yn explicitly by computing the Fredholm index of a
suitable operator obtained as in 18.10.1. If n = 2, the operator is “half” of the
Euler characteristic operator of the 2-sphere.

(d) Show directly thet yn ⊗̂Cn xn = 1C0(Rn) by finding a Kasparov product
[Kasparov 1980b, § 5, Theorem 7].

(e) y2 is exactly the element [∂̄R ] of 17.1.2(f), where T ∗R is identified with R2.
(More generally, y2n = [∂̄Rn ].) As a corollary, we obtain that [∂̄Rn ] is invertible.
More generally, [∂̄M ] is invertible if M is any simply connected complete Rie-
mannian manifold with non-positive sectional curvatures [Mǐsčenko 1974; Kas-
parov 1995] (cf. 20.7.2).

19.9.4. Topological Thom Isomorphism. This is a “parametrized version
of Bott Periodicity.” Let X be a compact Hausdorff space and V a real vector
bundle over X. Construct

x ∈ KK(Γ(Cliff(V )), C0(V )) and y ∈ KK(C0(V ), Γ(Cliff(V ))),

where Γ(Cliff(V )) is the homogeneous C∗-algebra of sections of the (complex)
Clifford bundle of V , in a manner analogous to the construction of 19.9.3.

Prove the following theorem [Kasparov 1980b, § 5, Theorem 8]:

Theorem. x and y are invertible elements which are inverses of each other .

The proof is similar to the proof of Bott Periodicity outlined in 19.9.3.
If V has a spinc-structure, then this structure gives a Morita equivalence

(hence a KK-equivalence) between Γ(Cliff(V )) and C(X) if dim(V ) is even,
and between Γ(Cliff(V )) and C(X) ⊗̂ C1 if dim(V ) is odd. So the topological
Thom isomorphism gives a KK-equivalence between C0(V ) and C(X) with de-
gree shift dim(V ) mod 2. This is the “classical” Thom isomorphism forK-theory,
expressed in KK language.

If X is a single point, we recover Bott Periodicity as done in 19.9.3. This is
the justification for calling the topological Thom isomorphism a parametrized
version of Bott periodicity, where the parameter runs over the space X.

19.9.5. Prove the following theorem:

Theorem. Let M , N , R be smooth manifolds, and f : M → N , g : N → R be
K-oriented maps. Let f ! ∈ KK(C0(M), C0(N)) and g! ∈ KK(C0(N), C0(R)) be
the corresponding shriek maps as defined in 17.1.2(g). Then (g ◦ f)! = f ! ⊗̂C0(N)
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g!. The same is true if M , N , R are foliated manifolds and f , g are foliation
maps.

This theorem, which is due to Kasparov in special cases and Connes and
Skandalis [1984] (see [Hilsum and Skandalis 1987; Moore and Schochet 1988]) in
full generality, is a fundamental fact; most of the applications of KK-theory to
geometry and topology discussed in section 24 are (at least implicitly) based on
this result.

19.9.3 (for n even) is a special case, where M = R is a one-point space and
N = Rn; we have x = f ! and y = g!, where f and g are the obvious maps.
19.9.4 is also a special case of 19.9.5 if X is a spinc-manifold and dim V is even:
take M = R = X and N = V .

19.9.6. Correspondences. [Connes and Skandalis 1984] Let X be a locally
compact (second countable) space and Y a (second countable) smooth man-
ifold (not necessarily compact). A correspondence from X to Y is a 4-tuple
(M,E, fX , fY ), where M is a smooth manifold, E is a vector bundle over M (so
Γ0(E) is a finitely generated projective module over C0(M)), fX : M → X is a
proper map, and fY : M → Y is a K-oriented map (17.1.2(g)).

(a) E defines modules

(Γ0(E), 1, 0) ∈ E(C, C0(M))

and (Γ0(E), µ, 0) ∈ E(C0(M), C0(M)), where µ is the action of C0(M) on Γ0(E)
by multiplication. Let [E] ∈ KK(C, C0(M)) and [[E]] ∈ KK(C0(M), C0(M))
be the corresponding equivalence classes. If ∆ : M → M ×M is the diagonal
map (a proper map), and [∆] ∈ KK(C0(M)⊗ C0(M), C0(M)) is its class, then
we have [[E]] = [E] ⊗̂C0(M) [∆].

(b) A correspondence (M,E, fX , fY ) from X to Y defines the element

f∗X([[E]] ⊗̂C0(M) fY !) ∈ KK(C0(X), C0(Y )).

Show that every element of KK(C0(X), C0(Y )) comes from a correspondence.

(c) Let (M1, E1, fX , fY ) be a correspondence from X to Y and (M2, E2, gY , gZ)
a correspondence from Y to Z. Define the composition to be the correspondence
(M1×YM2, π

∗
1(E1)⊕π∗2(E2), fX◦π1, gZ◦π2) fromX to Z, where πi : M1×YM2 →

Mi are the coordinate projections. (It may be necessary to perturb fY and gY
to smooth transverse maps via a homotopy.)

(d) Show that if x ∈ KK(C0(X), C0(Y )) and y ∈ KK(C0(Y ), C0(Z)) are rep-
resented by the correspondences (M1, E1, fX , fY ) and (M2, E2, gY , gZ) respec-
tively, then x ⊗̂C0(Y ) y is represented by the composition of the two correspon-
dences. Thus at least for commutative C∗-algebras the intersection product can
be constructed on a purely geometric level.

19.9.7. Work out the details of Kasparov theory for real and “real” C∗-algebras
(a “real” C∗-algebra is the complexification of a real C∗-algebra). Kasparov
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treats these cases simultaneously with the complex case. The major part of the
theory is identical except that more systematic use of Clifford algebras is neces-
sary. See also [Rosenberg 1986b] for results such as Connes’ Thom isomorphism
in the real case. The theory of real C∗-algebras is outlined in [Rosenberg 1986b]
and described in more detail in [Goodearl 1982; Madsen and Rosenberg 1988;
Schröder 1993].

19.9.8. [Skandalis 1988] Let Γ be a lattice in a simply connected Lie group
locally isomorphic to Sp(n, 1), and let A = C∗(Γ), J the kernel of the regular
representation, q : A → A/J = B = C∗r (Γ). (Γ has property T, and J is not
semisplit in A.) If e : J → Cq is as in 19.5.5, then e ∈ KK(J,Cq) is not invertible,
specifically there is no u ∈ KK(Cq, J) such that ue = 1Cq in KK(Cq, Cq). So
the sequence KK(Cq, J) e∗−→ KK(Cq, Cq)→ KK(Cq, CB) = 0 corresponding to
0 −→ J

e−→ Cq −→ CB −→ 0 is not exact in the middle; therefore for arbitrary
fixed first coordinate one does not have a six-term exact sequence in the second
variable for arbitrary extensions.

20. Equivariant KK-Theory

In this section, we indicate how the construction of the KK-groups can be
modified to give equivariant KK-groups for actions of locally compact groups,
and give a survey of the most important properties.

This section was based on Kasparov’s conspectus [Kasparov 1995]. This con-
spectus contains only bare outlines of proofs; a more complete version appeared
in [Kasparov 1988]. Some of the details were filled in by Fack [1983] and Rosen-
berg [1986b]. A complete account of equivariant E-theory has recently appeared
[Guentner et al. 1997]. It was my original hope to give a complete treatment
in these notes, but the project unfortunately proved to be impractical; thus we
must content ourselves with a survey.

The results here for compact groups are a rather simple extension of the non-
equivariant case, and were treated in Kasparov’s original paper; the substance
does not differ markedly from the results of Section 17. The noncompact case,
however, presents some considerable additional technical difficulties. Not sur-
prisingly, it is the noncompact case which is of the greatest interest, not only
because it provides a good framework for noncompact equivariant K-theory, but
also because some beautiful applications have been made to the Novikov conjec-
ture.

Kasparov’s approach for noncompact groups is rather different than the Baum–
Connes–Phillips approach to equivariant K-theory; Kasparov’s theory does not
agree with the ordinary KK-theory of the crossed products in general. For
this reason, Kasparov’s theory might more properly be called “G-continuous”
KK-theory.

Throughout this section, all topological groups considered will be locally com-
pact but not necessarily compact. To avoid potential difficulties, we will assume
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(except in 20.1.5) that all groups considered are second countable and all C∗-
algebras separable, although much of the work can be done in greater generality
(the reader who is so inclined may amuse himself by working out the possibili-
ties). A C∗-algebra with a continuous action of G is called a G-algebra.

20.1. Preliminaries

We must first introduce some terminology. The next definition is similar to
11.2.1.

Definition 20.1.1. Let (B,G, β) be a covariant system, and E a Hilbert B-
module. A continuous action of G on E is a homomorphism from G into the in-
vertible bounded linear transformations on E (not necessarily module homomor-
phisms) which is continuous in the strong operator topology, i.e. g → ‖〈g·x, g·x〉‖
is continuous for all x ∈ E, and for which

g · (xb) = (g · x)βg(b) for g ∈ G, x ∈ E, b ∈ B

A Hilbert B-module with a continuous action of G is called a Hilbert (B,G, β)-
module.

If E1 and E2 are Hilbert (B,G, β)-modules, then there is a natural induced
action of G on B(E1, E2) and K(E1, E2) as in 11.3.

If T ∈ B(E1, E2), then it is not true in general that the function g → g · T is
norm-continuous (it will only be strong-∗-operator continuous in general).

Definition 20.1.2. T ∈ B(E1, E2) is G-continuous if g → g · T is norm-
continuous.

The set of G-continuous elements of B(E) form a C∗-subalgebra containing
K(E).

Every G-equivariant map is clearly G-continuous. If G is compact, any G-
continuous map can be averaged over G to give a canonically associated G-
equivariant map.

Definition 20.1.3. A graded G-algebra is a G-algebra A with a grading A =
A(0) ⊕ A(1), where the A(n) are (globally) invariant under the action of G. A
graded covariant system is a covariant system (A,G, α) in which A is a graded
G-algebra.

Just as in the non-equivariant case, there is a corresponding notion of graded
Hilbert modules.

One can form (graded) tensor products of G-algebras; the action of G on the
tensor product is the diagonal action. If E1 is a (graded) Hilbert A-module,
E2 a (graded) Hilbert B-module, each with a continuous action of G, and φ is
an equivariant homomorphism from A to B(E2), then E1 ⊗̂φ E2 can be given
a continuous action of G in the obvious way. An important special case is
Ĥ
G

B = L2(G) ⊗̂C ĤB .
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The equivariant stabilization theorem says that Ĥ
G

B is the “universal” graded
Hilbert (B,G, β)-module:

Theorem 20.1.4. [Kasparov 1995, § 2; Mingo and Phillips 1984] Let (B,G, β)
be a graded covariant system, and E a countably generated Hilbert (B,G, β)-
module. Then there is a G-continuous isometric module isomorphism of degree
0 from E ⊕ Ĥ

G

B onto Ĥ
G

B .
The isomorphism cannot be chosen to be G-equivariant in general unless G is

compact .

The proof in [Mingo and Phillips 1984] is quite simple. The result follows im-
mediately from the ordinary stabilization theorem and the following two facts:

(1) If E is a countably generated graded Hilbert (B,G, β)-module, then there is
a G-continuous isomorphism E ⊕ L2(G,E∞) ∼= L2(G,E∞) of graded Hilbert
B-modules.

(2) If E1 and E2 are countably generated graded Hilbert (B,G, β)-modules,
and E1

∼= E2 as graded Hilbert B-modules, then there is a G-equivariant
isomorphism L2(G,E1) ∼= L2(G,E2) of graded Hilbert B-modules.

In both cases, there are straightforward explicit formulas for the isomorphisms.
The final preliminary result is the equivariant version of the Kasparov Tech-

nical Theorem (14.6.2). The version we give is not quite as general as the one
given in [Kasparov 1995], but is sufficient for applications.

Theorem 20.1.5. Let J be a σ-unital graded G-algebra. Let A1 and A2 be
σ-unital C∗-subalgebras of M(J), and ∆ a separable graded subspace of M(J).
Suppose A1, A2, ∆ consist of G-continuous elements, that A1 ·A2 ⊆ J , and that
∆ derives A1. Then there are G-continuous elements M,N ∈M(J) of degree 0
such that 0 ≤ M ≤ 1, N = 1 −M , M · A1 ⊆ J , N · A2 ⊆ J , [M,∆] ⊆ J , and
g ·M −M ∈ J for all g ∈ G.

If G is compact , then M and N may be chosen to be G-invariant .

20.2. The Equivariant KK-Groups

The definitions of this subsection are exact analogs of the ones of Section 17.

Definition 20.2.1. Let A and B be graded G-algebras. EG(A,B), the set
of Kasparov G-modules for (A,B), is the set of triples (E, φ, F ), where E is
a countably generated Hilbert B-module with a continuous action of G, φ :
A→ B(E) is an equivariant graded ∗-homomorphism, and F is a G-continuous
operator in B(E) of degree 1, such that [F, φ(a)], (F 2 − 1)φ(a), (F − F ∗)φ(a),
and (g · F − F )φ(a) are all in K(E) for all a ∈ A and g ∈ G. The set DG(A,B)
of degenerate Kasparov G-modules is defined correspondingly.

The equivalence relations ∼h, ∼oh, ∼c are defined exactly as in the non-
equivariant case.

Direct sum makes EG(A,B) into an abelian semigroup.
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Definition 20.2.2. KKG(A,B) is the quotient of EG(A,B) by ∼h.

Equivariant KKoh- and KKc-groups may be similarly defined.

Proposition 20.2.3. KKG(A,B) is an abelian group. KKG is a bifunctor
from pairs of G-algebras to abelian groups, contravariant in the first variable
and covariant in the second .

If G is compact, by a simple averaging we may reduce to the case where the
operator F is G-invariant:

Proposition 20.2.4. If G is compact , then any Kasparov G-module is a “com-
pact perturbation” of a Kasparov G-module in which the F is G-invariant . Ho-
motopies and operator homotopies may be taken to lie within this class. So if G
is compact , it suffices to consider Kasparov G-modules in which F is invariant
under the action of G.

This result can fail for G noncompact.
Kasparov G-modules can be visualized in various ways as in Section 17. If

f : A → B is an equivariant ∗-homomorphism, then f can be viewed as the
KKG(A,B)-element f = [(B, f, 0)].

We may define KK1
G(A,B) to be KKG(A,B ⊗̂C1), where G acts trivially on

C1. We then have formal Bott Periodicity:

Proposition 20.2.5. There are natural isomorphisms
KK1

G(A,B) ∼= KKG(A ⊗̂ C1, B)
and
KKG(A,B) ∼= KK1

G(A,B ⊗̂C1) ∼= KK1
G(A⊗̂C1, B) ∼= KKG(A⊗̂C1, B ⊗̂C1)

We sometimes write KK0
G(A,B) for KKG(A,B). We can define KKn

G(A,B) as
before; these groups are periodic mod 2.

Definition 20.2.6. KG
i (B) = KKi

G(C, B). Ki
G(A) = KKi

G(A,C).

Caution: We have used superscripts and subscripts according to our usual
convention (which should be the universal convention). However, some authors
such as Kasparov [1980b; 1995] use the opposite convention.
Note also that if A and B are not evenly graded, then KG

i (B) and Ki
G(A) do

not coincide with the ordinary equivariant K-groups (with the usual indexing).

We have the Green–Julg theorem, and its dual:

Theorem 20.2.7. (a) If G is compact , then KG
i (B) ∼= Ki(B ×β G).

(b) If G is discrete, then Ki
G(A) ∼= Ki(A×α G).

20.3. The Intersection Product

The intersection product has the same form and properties as in the non-
equivariant case. The proofs are similar, using the equivariant version of the
Technical Theorem (20.1.5).



208 VIII. KASPAROV’S KK-THEORY

Theorem 20.3.1. Let A1, A2, B1, B2, D be G-algebras. Then there is a bilinear
pairing

⊗̂D : KKm
G (A1, B1 ⊗̂D)×KKn

G(D ⊗̂A2, B2)→ KKm+n
G (A1 ⊗̂A2, B1 ⊗̂B2)

which is associative and functorial in all possible senses.

As a consequence, one has Bott periodicity. If G is compact, there are six-term
cyclic exact sequences in both variables for semisplit extensions, just as in the
non-equivariant case. The conditions for existence of exact sequences in the
noncompact case are not well understood.

If G is compact, we have a more general equivariant version of Bott Periodic-
ity:

Theorem 20.3.2. [Kasparov 1980b] Let G be compact , and let V be a finite-
dimensional real vector space with a continuous linear G-action. Then G has an
induced action on the complex Clifford algebra CV , and there are invertible ele-
ments x ∈ KKG(CV , C0(V )) and y ∈ KKG(C0(V ),CV ) (defined as in 19.9.3),
which are inverses of each other . If the action of G on V is spinor (in particular ,
if V is a complex vector space and the action of G is C-linear), then C0(V ) with
the induced action is KKG-equivalent to C0(V ) with the trivial action.

As a corollary, one obtains Atiyah’s equivariant Bott periodicity theorem for
K-theory (11.9.5). This result has been generalized to the case where G is
noncompact and the space is infinite-dimensional [Higson et al. 1997].

20.4. The Representation Ring

We have an immediate corollary of 20.3.1:

Corollary 20.4.1. If A is a G-algebra, then KKG(A,A) is an associative ring
with unit 1A. KK∗G(A,A) = KKG(A,A)⊕KK1

G(A,A) is an associative graded
ring with unit .

Definition 20.4.2. The representation ring of G is the graded ring R∗(G) =
KK∗G(C,C). R0(G) is the ring KKG(C,C).

Proposition 20.4.3. R∗(G) is a commutative ring in the graded sense, i .e.
xy = (−1)∂x·∂yyx; R0(G) is a commutative ring .

Proposition 20.4.4. If G is compact , R∗(G) = R0(G) is the usual representa-
tion ring R(G) defined in 11.1.3, and R1(G) = 0.

Theorem 20.4.5. For any A and B, KKG(A,B) is an R0(G)-module via in-
tersection product . Functoriality of KKG and the bilinearity of the product re-
spect the module structure, i .e. KKG is a bifunctor from pairs of G-algebras
to R0(G)-modules. Similarly , KK∗G is a bifunctor from pairs of G-algebras to
graded R∗(G)-modules. KKG(A,A) is an R0(G)-algebra; KK∗G(A,A) is a graded
R∗(G)-algebra.
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20.5. Restriction and Induction

We now consider to what extent KKG is functorial in G. There is one obvious
morphism:

Definition 20.5.1. Let f : H → G be a continuous homomorphism, and let
A and B be G-algebras. A and B may be regarded as H-algebras via f , and
the map ρf : KKG(A,B) → KKH(A,B) defined in the obvious way is called
the restriction homomorphism. If f is the inclusion of a subgroup, we sometimes
write ρH or ρG↓H for ρf .

The name “restriction homomorphism” is perhaps not appropriate in the general
case; for example, one important instance arises when f is a quotient map.
However, the terminology is established.
ρf is functorial in A and B and compatible with intersection products. If

f1 : Γ→ H, f2 : H → G, then ρf2◦f1 = ρf2 ◦ ρf1 . If A = B, ρf (1A) = 1A.
To describe the induction morphism, we first need the following definition,

which is natural in light of the ordinary process of induction of representations:

Definition 20.5.2. Let H be a subgroup of G, and B a H-algebra. IndH↑G(B)
is the C∗-algebra of all continuous functions f from G to B such that f(gh) =
h−1 · (f(g)) for all g ∈ G, h ∈ H, and such that ‖f‖, regarded as a function on
G/H, vanishes at infinity.

G acts on IndH↑G(B) by left translation.

Examples 20.5.3. (a) If α ∈ Aut(A), then the mapping torus (10.3.1) Mα is
IndZ↑R(A).

(b) If B is a G-algebra viewed as an H-algebra by restriction of the action,
then IndH↑G(B) is equivariantly isomorphic to C0(G/H)) ⊗ B via Φ, where
[Φ(f)](g) = g · f(g).

If E is a Hilbert B-module with continuous action of H, then the same formulas
as above define a Hilbert IndH↑G(B)-module IndH↑G(E) with continuous action
of G.

Theorem 20.5.4. Let H be a subgroup of G, and A and B H-algebras. Then
there is an induction homomorphism

ιH↑G : KKH(A,B)→ KKG(IndH↑G(A), IndH↑G(B))

which is functorial in A and B and compatible with the intersection products. If
Γ ⊆ H ⊆ G, then ιH↑G ◦ ιΓ↑H = ιΓ↑G. If A = B, then ιH↑G(1A) = 1IndH↑G(A).

ιH↑G is defined as follows. Let (E, φ, F ) ∈ EG(A,B). There is an obvious
homomorphism ψ : IndH↑G(A) → B(IndH↑G(E)). Let F̃ ∈ B(IndH↑G(E)) be
defined by

F̃ (g) =
∫
H

h · Fα(gh) dh
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where α is a nonnegative scalar-valued function on G with
∫
H
α(gh) dh = 1 for

all g and such that
∫
H
| α(gh) − α(g0h) | dh → 0 as g → g0. ιH↑G[(E, φ, F )] =

[(IndH↑G(E), ψ, F̃ )].
We have the following “Frobenius Reciprocity Theorem”, due to A. Wasser-

mann [1983]:

Theorem 20.5.5. If H is a closed subgroup of a compact group G, and if A is
a G-algebra and B an H-algebra, then there is an isomorphism KKH(A,B) →
KKG(A, IndH↑G(B)) given by x → ψ∗(ιH↑G(x)), where ψ is the inclusion A ∼=
A⊗ 1 ⊆ A⊗ C(G/H) ∼= IndH↑G(A). The inverse is given by y → η∗(ρG↓H(y)),
where η : IndH↑G(B)→ B is evaluation at the identity .

20.6. Relation with Crossed Products

In this subsection, we give the fundamental relationship between equivariant
KK-theory and the K-theory of crossed products.

Let (B,G, β) be a covariant system, and let E be a Hilbert B-module. The
algebra Cc(G,B) acts on Cc(G,E) by

(xf)(t) =
∫
G

x(s)βs(f(s−1t)) dt

Define a Cc(G,B)-valued inner product on Cc(G,E) by

〈x, y〉(t) =
∫
G

βs−1(〈x(s), y(st)〉B) ds

Definition 20.6.1. The completion of Cc(G,E) with this inner product is a
Hilbert B ×β G-module, denoted E ×β G.

(Note that E is not assumed to have a G-action.)

Now suppose (E, φ, F ) ∈ EG(A,B). φ induces ψ : A×α G→ B(E ×β G) by

(ψ(a)x)(t) =
∫
G

φ(a(s)) · [s · x(s−1t)] ds for a ∈ Cc(G,A), x ∈ Cc(G,E)

Define F̃ ∈ B(E ×β G) by (F̃ x)(t) = F (x(t)) for x ∈ Cc(G,E).

Theorem 20.6.2. (E ×β G,ψ, F̃ ) ∈ E(A ×α G,B ×β G). The map sending
(E, φ, F ) to (E ×β G,ψ, F̃ ) gives a homomorphism

jG : KKG(A,B)→ KK(A×α G,B ×β G)

which is functorial in A and B and compatible with the intersection product . If
A = B then jG(1A) = 1A×αG.
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20.7. Connected Groups

20.7.1. In this subsection, we obtain more specific information about the maps
of 20.5 and 20.6 for connected groups. In good cases, the restrictions to the
maximal compact subgroup are isomorphisms; in general, this restriction picks
out the “interesting part” of the KK-theory.

Throughout this subsection, G will denote a connected locally compact group
and H a maximal compact subgroup of G (recall that all maximal compact
subgroups are conjugate).

The results use some canonical elements associated to G and H. If M is
a complete Riemannian manifold with continuous G-action, we may form the
canonical element y ∈ KKG(Γ0(Cliff(T ∗M)),C) corresponding to the “Dirac
operator” (analogous to 19.9.3). If M is simply connected and has nonpositive
sectional curvature, another canonical element x ∈ KKG(C,Γ0(Cliff(T ∗M)))
can be constructed as the “dual Dirac” element as in 19.9.3. In the case of G and
H, G has a compact normal subgroup K with G/K a Lie group, and M = G/H

is a homogeneous space of G/K. Thus the element y can be constructed for
M as above. If G/K is semisimple with finite center, then M (which is simply
connected in any case) has nonpositive sectional curvature, and x may also
be constructed as above. In the general case x must be constructed using an
inductive argument on the dimension of G/K.

If V is the tangent space to M = G/H at the identity coset, then the C∗-
algebra Γ0(Cliff(T ∗M)) is isomorphic to IndH↑G(CV ), where CV is the complex
Clifford algebra of V . Thus we can use the KKH -equivalence of CV and C0(V )
(20.3.2) to transfer x and y to elements of KG

0 (C0(T ∗M)) and K0
G(C0(T ∗M))

respectively. (Note that CV is graded, so if dimM is odd, then x and y are
really “KK1

G-elements”.)
If the canonical action of H on V is spinor, we may further reduce to x ∈

KG
n (C0(M)), y ∈ Kn

G(C0(M)), where n = dimM mod 2.

Theorem 20.7.2. (a) y ⊗̂C x = 1C0(T∗M).
(b) zG = x ⊗̂C0(T∗M) y is an idempotent in R0(G); if Γ is a connected subgroup

of G, then ρG↓Γ(zG) = zΓ.
(c) If Γ is an amenable subgroup of G, then ρG↓Γ(zG) = 1 (the identity of
R0(Γ)). In particular , if G is amenable, then zG = 1.

The Theorem remains true in the case where M is a simply connected G-manifold
with nonpositive sectional curvature. The proof in both cases is along the lines
of 19.9.3.

x, y, z are called β, α, γ respectively in [Kasparov 1995]; x and y are called
δ̂ and δ respectively in [Connes 1994].

If G has Kazhdan’s Property (T), then zG 6= 1. See 20.9 for further discussion
of the circumstances under which zG = 1.

The idempotent zG may be thought of as the support of the “well-behaved”
part of R0(G). The next few results and conjectures make this precise.
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Theorem 20.7.3. The restriction map ρG↓H is surjective; its kernel is ex-
actly the kernel of module multiplication by zG, denoted ker zG. KKG(A,B) ∼=
(ker zG) ⊕ (ker(1 − zG)), and ker(1 − zG) ∼= KKH(A,B). If G is amenable,
ρG↓H : KKG(A,B)→ KKH(A,B) is an isomorphism.

Set n = dimM . If (A,G, α) is a covariant system, then G has a diagonal action
δ on A ⊗̂Cn, where the action on Cn comes from identifying it with the Clifford
algebra of V . By sending x ⊗̂1A and y ⊗̂1A over with jG, and using the Morita
equivalence of (IndH↑G(A⊗̂Cn))×τG with (A⊗̂Cn)×δH [Green 1977], we obtain
elements x̃ ∈ KK(A×αG, (A⊗̂Cn)×δH) and ỹ ∈ KK((A⊗̂Cn)×δH,A×αG).

If the representation of H on V is spinor, then x̃ and ỹ may be regarded as
elements of KKn(A×α G,A×α H) and KKn(A×α H,A×α G) respectively.

From the functoriality of jG, we have that ỹ ⊗̂A×αG x̃ = 1(A×Cn)×δH , and
x̃ ⊗̂(A×Cn)×δH ỹ = z̃ = jG(zG) ⊗̂ 1A. z̃ is an idempotent in the ring KK(A×α
G,A×α G); if G is amenable, then z̃ = 1A×αG.

We summarize the results of this construction in a theorem.

Theorem 20.7.4. For any A and B the homomorphism from KK(A×α G,B)
to KK((A ⊗̂ Cn) ×δ H,B) given by left multiplication by x̃ is surjective. Its
kernel is the same as the kernel of left multiplication by z̃. A similar statement
holds for right multiplication by ỹ.

Corollary 20.7.5. If G is amenable, then A ×α G and (A ⊗̂ Cn) ×δ H are
KK-equivalent . If the action of H on V is spinor , then A ×α G and A ×α H
are KK-equivalent , with a shift in parity equal to dimG/H mod 2.

The Thom isomorphism (19.3) is a special case of this theorem, with G = R.
One feature of the canonical element x ∈ K0

G(C0(T ∗M)) is that the natural
homomorphism from C∗(G) to B(E×βG) coming from the transition from KKG

to KK of the crossed product factors through C∗r (G), i.e. if π : C∗(G)→ C∗r (G)
is the quotient map, there is an element x̃r ∈ KK(C∗r (G),Cn ×δ H) with x̃ =
π∗(x̃r). Set z̃r = x̃r ⊗̂Cn×δH ỹ. Then z̃r ∈ KK(C∗r (G), C∗(G)) and z̃ = π∗(z̃r).
We may push z̃r via π∗ to obtain w̃ = π∗(z̃r) ∈ KK(C∗r (G), C∗r (G)).

The following conjecture is called the Connes–Kasparov–Rosenberg Conjecture
[Connes and Moscovici 1982a; 1982b; Rosenberg 1984, 4.1; Kasparov 1995, § 6]:

Conjecture 20.7.6. w̃ = 1C∗r (G).

The conjecture can also be stated for crossed products.
If this conjecture is true for a group G, it has the following consequence:

Consequence 20.7.7. z̃r ∈ KK(C∗r (G), C∗(G)) defines a cross section (split-
ting) for the K-theory exact sequence corresponding to the extension

0→ kerπ → C∗(G)→ C∗r (G)→ 0

so there is a canonical splitting

K∗(C∗(G)) ∼= K∗(C∗r (G))⊕K∗(kerπ)
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The conjecture is true for many classes of groups. However, the conjecture fails
for G = Γ of 19.9.8 [Skandalis 1988].

The original form of the Connes–Kasparov Conjecture was:

Conjecture 20.7.8. If ỹr = π∗(ỹ) ∈ KK(Cn ⊗δ H,C∗r (G)), then right mul-
tiplication by ỹr gives an isomorphism between K∗(Cn ⊗δ H) and K∗(C∗r (G)),
and similarly for crossed products.

There are two differences between 20.7.8 and 20.7.6: (1) under 20.7.8, ỹr could
be a KK-equivalence whose inverse is not x̃r; or (2) ỹr might not be a KK-
equivalence but might nonetheless give an isomorphism on K-theory. (2) cannot
happen in the presence of the UCT by 23.10.1; the failure of the UCT in the
example may exactly account for the failure of 20.7.6 in this case.

We will discuss applications of the results of this section to the Novikov con-
jecture in Section 24.

20.8. Discrete Groups

[Kasparov 1995] also contains a number of results about discrete subgroups
of connected groups. One example is the following, which is useful in computing
the ring R∗(Π) for discrete Π.

Theorem 20.8.1. Let G be a connected Lie group, H a maximal compact
subgroup, and Π a discrete subgroup of G. Then the subgroup {x ∈ Ri(Π) |
ρG↓Π(zG)x = x} of the group Ri(Π) is isomorphic to KH

i (Γ(Cliff(G/Π)).

Other results give ways of calculating the KK-groups of A ×α Π, including a
spectral sequence, whenever Π is a torsion-free discrete subgroup of a connected
group. As a very special case one recovers the Pimsner–Voiculescu exact se-
quence.

20.9. K-Theoretic Amenability for Groups

If G is a locally compact group, the study of the full group C∗-algebra C∗(G)
and the reduced group C∗-algebra C∗r (G) is important in many contexts. The
structure of these C∗-algebras is, of course, of fundamental importance in the
theory of group representations. In addition, natural examples of interesting C∗-
algebras arise as group C∗-algebras (cf. 6.10.4). When full and reduced crossed
product algebras are also considered, the range of interesting examples and ap-
plications is greatly expanded.

Since group C∗-algebras and crossed products often seem to have a rather
intractable structure, it is very desirable to have techniques for calculating K-
groups, Ext-groups, and more generally KK-groups for such algebras. The re-
sults of chapter V are basic examples of such results.

It is frequently much simpler to deal with C∗(G) than with C∗r (G), since
C∗(G) has a readily identified universal property for representations. In order to
apply results on C∗(G) to C∗r (G), one would like general results identifying the
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K-theories, ideally a KK-equivalence. Cuntz [1983b] was thus led to introduce
the notion of K-theoretic amenability for discrete groups. Julg and Valette [1983,
1984, 1985] subsequently extended the definition to nondiscrete groups.

Definition 20.9.1. A locally compact group G is K-amenable if the element
1C ∈ KKG(C,C) is represented by a module (H0 ⊕Hop

1 , 1, F ), where G acts on
H0 and H1 by representations weakly contained in the regular representation.

At least for discrete groups, the definition may be rephrased in Cuntz’ original
form:

Proposition 20.9.2. (a) If G is K-amenable, then the quotient map λ :
C∗(G) → C∗r (G) is a KK-equivalence. More generally , if A is a G-algebra,
then λ : C∗(G,A)→ C∗r (G,A) is a KK-equivalence.

(b) If G is discrete and λ is a KK-equivalence, then G is K-amenable.

Any amenable group is obviously K-amenable, but there are also many nona-
menable groups which are K-amenable, as the next theorem shows.

Theorem 20.9.3. [Cuntz 1983b] The class of K-amenable discrete groups is
closed under extensions, direct limits, direct products, and free products. A
closed subgroup of a K-amenable group is K-amenable.

Thus any free group, or more generally any free product of discrete abelian
groups, is K-amenable.

There are groups which are not K-amenable: for example, any group with
Kazhdan’s property (T) has a direct summand of C in its full group C∗-algebra
which is in the kernel of λ, and therefore cannot be K-amenable. It follows that
a quotient of a K-amenable group need not be K-amenable (any discrete group
is a quotient of a free group).

Pimsner [1986] has shown the following extension of a result of Julg and
Valette:

Theorem 20.9.4. If G is a locally compact group acting without involution on
a tree, and if all the stability groups are K-amenable, then G is K-amenable.

It follows that SL2(Qp) is K-amenable.
Kasparov [1984b] has shown that any group locally isomorphic to SO(n, 1) is

K-amenable. It is also conjectured that groups locally isomorphic to SU(n, 1) are
K-amenable. If this is true, then a connected Lie group would be K-amenable if
and only if it has a composition series consisting of SO(n, 1)’s, SU(n, 1)’s, and
compact groups (any other simple Lie group has property (T)).

If G is connected and the element zG of 20.7.2 is 1, then G is K-amenable.
The converse is conjectured but still open, but is true for Lie groups [Julg and
Kasparov 1995]. If this is true in general, then throughout 20.7 “amenable”
could be replaced by “K-amenable”.

See [Julg and Valette 1985] for a further discussion of K-amenability.
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20.10. EXERCISES AND PROBLEMS

20.10.1. Work out the details of all of the results outlined in this section and
the additional results in [Kasparov 1995]. Develop structure theorems for R∗(G)
for standard classes of G.

20.10.2. K-Theoretic Nuclearity. [Skandalis 1988]

(a) A Kasparov (A,B)-module (E, φ, F ) is called nuclear if φ : A → B(E) can
be approximated in the topology of pointwise strong operator convergence by
completely positive finite-rank contractions (cf. 15.8.1).

(b) In analogy with 20.9.1, a separable (graded) C∗-algebra A is K-nuclear if
1A ∈ KK(A,A) is represented by a nuclear Kasparov module. Any nuclear or
K-contractible C∗-algebra is K-nuclear.

(c) A Kasparov product of a nuclear Kasparov module with any Kasparov mod-
ule (in either order) is nuclear. Thus the class of K-nuclear C∗-algebras is closed
under KK-equivalence.

(d) The class of K-nuclear C∗-algebras is closed under minimal and maximal
tensor products, and under (full or reduced) crossed products by K-amenable
groups. In particular, if G is K-amenable, then C∗(G) and C∗r (G) are K-nuclear.
If 0→ J → A→ A/J → 0 is a semisplit exact sequence, and two of the algebras
are K-nuclear, then so is the third.

(e) If A is K-nuclear, then for every (separable) B the quotient map from A⊗̂max

B to A ⊗̂B is a KK-equivalence, and the kernel is K-contractible.

(f) If A is K-nuclear, then KK(A, · ) is a homology theory on the category of
separable C∗-algebras, i.e. there is a cyclic 6-term exact sequence in the second
variable for arbitrary (not necessarily semisplit) graded extensions.

(g) If 0→ J → A→ A/J → 0 is an exact sequence (not necessarily semisplit) of
K-nuclear graded C∗-algebras, then for any separable B there is a cyclic 6-term
exact sequence for KK( · , B) corresponding to this extension.

(h) Is every K-nuclear C∗-algebra KK-equivalent to a nuclear C∗-algebra?

(i) Formulate an equivariant version of K-nuclearity and examine the relation-
ship with K-amenability.

(j) The C∗-algebra C∗r (Γ) is not K-nuclear, where Γ is as in 19.9.8. (Use (f).)
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CHAPTER IX

FURTHER TOPICS

21. Homology and Cohomology Theories on C∗-Algebras

In this section, we define and derive some basic properties of abstract homol-
ogy and cohomology theories for C∗-algebras. We consider only trivially graded
C∗-algebras.

The results and ideas of this section are taken primarily from [Schochet 1984a],
although many of them are at least based on folklore and some are straightfor-
ward translations of standard results of topology.

21.1. Basic Definitions

Let S be a subcategory of the category of all C∗-algebras, which is closed
under quotients, extensions, and closed under suspension in the sense that if A ∈
Ob(S), then SA ∈ Ob(S), that φ ∈ HomS(A,B) implies Sφ ∈ HomS(SA, SB),
and that C0(R) ∈ Ob(S) and every ∗-homomorphism from C0(R) to A is in
HomS(C0(R), A).

We will consider covariant and contravariant functors F from S to Ab, the
category of abelian groups, although we could more generally work with functors
to any abelian category with arbitrary limits (for some results less is required).
We will consider only functors which satisfy the following homotopy axiom:

(H) If f0, f1 : A → B are homotopic, then f0∗ = f1∗ : F (A) → F (B) [or
f∗0 = f∗1 : F (B)→ F (A) in the contravariant case].

Definition 21.1.1. A homology theory on S is a sequence {hn} of covariant
functors from S to Ab, satisfying (H) and

(LX) If 0 −→ J
i−→ A

q−→ B −→ 0 is a short exact sequence in S, then for
each n there is a connecting map ∂ : hn(B)→ hn−1(J) making exact the long
sequence

· · · ∂−→ hn(J)
i∗−→ hn(A)

q∗−→ hn(B) ∂−→ hn−1(J)
i∗−→ · · ·

∂ is natural with respect to morphisms of short exact sequences.

A cohomology theory on S is a sequence {hn} of contravariant functors from S
to Ab, satisfying (H) and

217
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(LX′) If 0 −→ J
i−→ A

q−→ B −→ 0 is a short exact sequence in S, then for
each n there is a connecting map ∂ : hn(J)→ hn+1(B) making exact the long
sequence

· · · ∂−→ hn(B)
q∗−→ hn(A) i∗−→ hn(J) ∂−→ hn+1(B)

q∗−→ · · ·

∂ is natural with respect to morphisms of short exact sequences.

∂ must be 0 for a split exact sequence by naturality. It follows that the functors
in a homology or cohomology theory are automatically additive.

We will allow homology or cohomology theories where the index set is all of
Z, or a set of the form {n : n ≥ n0} or {n : n ≤ n0}.

If S is closed under stable isomorphism, then a homology or cohomology
theory on S is called stable if each functor satisfies

(S) If η : A→ A⊗K sends a to a⊗ p for a one-dimensional projection p, then
η∗ is an isomorphism.

If S is closed under finite direct sums and (countable) inductive limits, it is
closed also under (countable) direct sums (where a direct sum of C∗-algebras is
understood to be the c0-direct sum). A homology theory on such an S is called
σ − additive if it satisfies

(A) If A =
⊕
Ai is a countable direct sum, then for each n the canonical maps

hn(Ai)→ hn(A) induce an isomorphism
⊕

i hn(Ai)→ hn(A).

A cohomology theory on S is called σ-additive if it satisfies

(A′) If A = ⊕Ai is a countable direct sum, then for each n the canonical maps
hn(A)→ hn(Ai) induce an isomorphism hn(A)→

∏
i h

n(Ai).

A theory is called completely additive if the same is true for arbitrary direct
sums.

The notion of σ-additivity (or complete additivity) is called “additivity” in
some references such as [Rosenberg and Schochet 1987]. We have not used this
terminology since it is easily confused with (finite) additivity of functors.

Examples 21.1.2. (a) {Kn} is a stable completely additive homology theory
on the category of all C∗-algebras.

(b) For a fixed separable A, {KKn(A, · )} is a stable homology theory on the
category of σ-unital nuclear C∗-algebras (19.5.7). It is not σ-additive in general
(19.7.2). If A is separable and nuclear, then {KKn(A, · )} is a stable homology
theory on the category of all σ-unital C∗-algebras (19.5.6).

(c) For a fixed σ-unital B, {KKn( · , B)} is a stable σ-additive cohomology the-
ory on the category of separable nuclear C∗-algebras (19.5.7, 19.7.1).

(d) Any homology or cohomology theory (in the usual sense) on locally compact
Hausdorff spaces gives respectively a cohomology or homology theory on the
category of commutative C∗-algebras. Some, but not all, of these theories are
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σ-additive or completely additive. For example, Čech cohomology with compact
supports gives a completely additive homology theory on the category of all
commutative C∗-algebras.

21.2. Mayer–Vietoris Sequence

We now obtain a noncommutative analog of the Mayer–Vietoris exact se-
quence of topology, which tells how to compute the homology of a pushout.
More specifically, if a space X is the union of two closed subspaces X1 and X2,
the Mayer–Vietoris sequence relates the homology of X to that of X1, X2, and
X1 ∩X2.

We begin with one simple general property of homology and cohomology
theories.

Proposition 21.2.1. Let {hn} [resp. {hn}] be a homology [resp. cohomology ]
theory on S. Then, for any A, we have hn+1(A) ∼= hn(SA) [resp. hn+1(A) ∼=
hn(SA)].

Proof. Apply the long exact sequence to 0 → SA → CA → A → 0 and note
that CA is contractible, so hn(CA) = 0. �

Theorem 21.2.2 (Mayer–Vietoris Sequence for Homology). Let {hn}
be a homology theory on S, and let the following commutative “pullback” diagram
(15.3) of C∗-algebras in S be given:

P
g1 - A1

A2

g2
? f2 - B

?
f1

with P = {(a1, a2) | f1(a1) = f2(a2)} ⊆ A1⊕A2, and f1 and f2 surjective. Then
there is a long exact sequence

· · ·
γ- hn(P )

(g1∗, g2∗)- hn(A1)⊕hn(A2)
f2∗−f1∗- hn(B)

γ- hn−1(P ) - · · ·

which is natural with respect to morphisms of pullback diagrams.

Proof. Let g = g1 ⊕ g2 : P → A1 ⊕A2. Then

Cg ∼= {(h1, h2) | f1(h1(0)) = f2(h2(0))} ⊆ CA1 ⊕ CA2.

There is a canonical map ψ : Cg → SB defined by

[ψ(h1, h2)](t) =

{
f1(h1(1− 2t)) for t ≤ 1

2 ,

f2(h2(2t− 1)) for t ≥ 1
2 .

Since the fi are surjective, ψ is surjective. Thus we have a natural short exact
sequence

0 −→ CJ1 ⊕ CJ2 −→ Cg
ψ−→ SB −→ 0,
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where Ji = ker fi. Since kerψ is contractible, ψ∗ is an isomorphism.
Let k : SA1 ⊕ SA2 → SB be the restriction of ψ to SA1 ⊕ SA2 ⊆ Cg. Then

k is homotopic to the function ω : SA1 ⊕ SA2 → SB defined by ω(h1, h2)(t) =
f2(h2(t))− f1(h1(t)), so k∗ : hn(SA1)⊕ hn(SA2) is given by k∗(x, y) = f2∗(y)−
f1∗(x).

The long exact sequence corresponding to 0→ SA1 ⊕ SA2 → Cg → P → 0 is

· · · - hn+1(P )
∂ - hn(SA1 ⊕ SA2) - hn(Cg) - hn(P ) - · · ·

hn(SA1)⊕ hn(SA2)

∼=
? k∗- hn(SB)

∼=
?
ψ∗

Applying the suspension isomorphism hn+1(D) ∼= hn(SD) (21.2.1), we obtain
the desired sequence. It is easy to check that the map corresponding to ∂ under
this identification is g∗. �

The hypothesis that f1 and f2 be surjective may be removed [Schochet 1984a,
4.5].

The statement and proof of the Mayer–Vietoris Theorem for Cohomology is
nearly identical:

Theorem 21.2.3 (Mayer–Vietoris Sequence for Cohomology). Let
{hn} be a cohomology theory on S. Then, given a pullback diagram as in 21.2.2,
there is a natural long exact sequence

· · · - hn(B)
(−f∗1 , f∗2 )- hn(A1)⊕ hn(A2)

g∗1 + g∗2- hn(P ) - hn+1(B) - · · ·

21.3. Continuity

There is another axiom which turns out to be equivalent to σ-additivity. A
covariant functor F from S to Ab is called continuous if it satisfies

(C) If A = lim−→Ai is a countable inductive limit, then F (A) = lim−→F (Ai) via
the canonical maps.

A homology theory on S is continuous if each hn is continuous.

Theorem 21.3.1. A homology theory on S is σ-additive if and only if it is
continuous.

Proof. Continuity clearly implies σ-additivity. To prove the converse, we use
a “mapping telescope” construction due to L. Brown. Let A = lim−→Ak, and
define T = {f | f(t) ∈ Ak for t ≤ k} ⊆ C0((0,∞], A). Then T is contractible,
so h∗(T ) = 0. The kernel J of the evaluation map p∞ : T → A (pt(f) = f(t))
satisfies hn(J) ∼= hn+1(A) from the long exact sequence. Set

Bk = {f ∈ C([k, k+1], Ak+1) | f(k) ∈ Ak}.

Then the inclusion of Ak into Bk via constant functions is a homotopy equiv-
alence with inverse pk. Set D1 =

⊕
k oddBk, D2 =

⊕
k evenBk. D1 ⊕ D2
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is homotopy equivalent to
⊕
Ak. There are obvious maps ri : J → Di and

qi : Di →
⊕
Ak, and it is easily checked that the following diagram is a pullback

diagram:

J
r1 - D1

D2

r2
? q2-

⊕
Ak

?
q1

We apply Mayer–Vietoris to obtain

· · · −→ hn(J) −→ hn(D1)⊕ hn(D2)
φ−→ hn

(⊕
Ak
)
−→ hn−1(J) −→ · · · ,

where φ = q2∗ − q1∗. We have hn(J) ∼= hn+1(A) and hn
(⊕

Ak
) ∼= hn(D1) ⊕

hn(D2), and hn
(⊕

Ak
) ∼= ⊕hn(Ak) by assumption, so by substituting the long

exact sequence becomes

· · · −→ hn+1(A) −→
⊕

k hn(Ak)
Φn−→

⊕
k hn(Ak) −→ hn(A) −→ · · ·

with Φn
(⊕

xk
)

=
⊕

(xk − fk−1∗(xk−1)), where fk is the embedding of Ak into
Ak+1. Unsplicing yields short exact sequences

0 −→ coker Φn −→ hn(A) −→ ker Φn+1 −→ 0.

We have coker Φn ∼= lim−→hn(Ak) and ker Φn+1 = 0, establishing the theorem. �

There is no obvious corresponding notion of continuity for contravariant functors.
However, the next theorem gives a property of σ-additive cohomology theories
which is analogous to continuity:

Theorem 21.3.2. If h∗ is a σ-additive cohomology theory on S, and A = lim−→Ai
in S, then for each n there is a natural Milnor lim1-sequence

0 −→ lim1

←− hn−1(Ai) −→ hn(A) −→ lim←−h
n(Ai) −→ 0

Proof. The proof is identical to that of 21.3.1 (with appropriate indices raised
and arrows reversed) until the very end. We get a short exact sequence

0 −→ coker Φn−1 −→ hn(A) −→ ker Φn −→ 0.

The map Φn :
∏
k h

n(Ak)→
∏
k h

n(Ak) is given by

Φn
(∏

xk
)

=
∏

(xk − f∗k (xk−1)),

so ker Φn ∼= lim←−h
n(Ak) and coker Φn−1 ∼= lim1

←− hn−1(Ak). �
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21.4. Half-Exact Functors

The final result of this section is a sort of converse to 21.2.1, giving a way of
generating a homology or cohomology theory from a single functor.

We say that a covariant [resp. contravariant] functor F from S to Ab is half-
exact if it satisfies

(HX) If 0 −→ J
i−→ A

q−→ B −→ 0 is a short exact sequence, then F (J) i∗−→
F (A)

q∗−→ F (B) [or F (B)
q∗−→ F (A) i∗−→ F (J), as the case may be] is exact in

the middle.

A functor F from S to an additive category A is half-exact if HomA(F (D), F ( · ))
and HomA(F ( · ), F (D)) are half-exact for every D ∈ S.

Proposition 21.4.1. Let 0 −→ J
j−→ A

q−→ B −→ 0 be a short exact sequence
in S, and let F be a half-exact homotopy-invariant additive functor (covariant
or contravariant) on S. If B is contractible, then j induces an isomorphism
between F (J) and F (A).

Proof. We first prove the result for F a covariant functor to Ab; the contravari-
ant case is essentially identical. We have that F (B) = 0, so that j∗ : F (J) →
F (A) is surjective. Applying half-exactness to the exact sequence 0 −→ SB

i−→
Cq

p−→ A −→ 0, we also obtain that p∗ : F (Cq)→ F (A) is injective, since SB is
contractible and hence F (SB) = 0. Finally, set Z = {f : [0, 1]→ A | f(1) ∈ J}.
Then the inclusion k of J into Z as constant functions is a homotopy equiva-
lence. We have an exact sequence 0 −→ CJ −→ Z

π−→ Cq −→ 0; since CJ is
contractible, we have that π∗ : F (Z) → F (Cq) is injective. Since j = p ◦ π ◦ k,
the map j∗ = p∗ ◦ π∗ ◦ k∗ is injective.

Now suppose F is a (covariant) functor to an additive category A. By the
first part of the proof, there is an h ∈ HomA(F (A), F (J)) such that F (j) ◦ h =
idF (A) (using the fact that idF (A) is in the image of j∗ : HomA(F (A), F (J)) →
HomA(F (A), F (A))). Similarly, using surjectivity of j∗ : HomA(F (A), F (J))→
HomA(F (J), F (J)), there is a k ∈ HomA(F (A), F (J)) with k ◦ F (j) = idF (J).
Then F (j) ◦ h ◦ F (j) = F (j) ◦ k ◦ F (j) = F (j), i.e. j∗(h ◦ F (j)) = j∗(k ◦ F (j)),
so h ◦ F (j) = k ◦ F (j) since j∗ is injective. So j∗(h) = j∗(k), and by injectivity
of j∗ we get h = k as the inverse of j. �

We have the following analog of 19.5.5. Note that no semisplitting is assumed.

Corollary 21.4.2. Let 0 −→ J
j−→ A

q−→ B −→ 0 be a short exact sequence
in S, and let F be a half-exact homotopy-invariant additive functor on S. Then
the map e : J → Cq defined in 19.5.5 induces an isomorphism between F (J) and
F (Cq).

Proof. Apply 21.4.1 to the exact sequence 0 −→ J
e−→ Cq −→ CB −→ 0 and

note that CB is contractible. �
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Theorem 21.4.3. Let F be an additive covariant functor from S to Ab satis-
fying (H ) and (HX ). Set Fn(A) = F (SnA) and ∂ = e−1

∗ ◦ i∗ : F (SB) → Cq →
F (J). Then {Fn} is a homology theory on S.

Let F be an additive contravariant functor from S to Ab satisfying (H ) and
(HX ). Set F−n(A) = F (SnA), and ∂ = i∗ ◦ e∗−1. Then {Fn} is a cohomology
theory on S.

Proof. We prove the covariant statement; the other is analogous. If 0 −→
J

j−→ A
q−→ B −→ 0 is a short exact sequence, it suffices to prove that the

sequence

· · · j∗−→ F (SA)
q∗−→ F (SB) ∂−→ F (J)

j∗−→ F (A)
q∗−→ F (B)

is exact at F (SB) and at F (J). Exactness at F (J) comes from half-exactness
applied to 0 → SB → Cq → A → 0 and the isomorphism of F (J) and F (Cq).
For exactness at F (SB), define

T = {(f, g) : g(0) = q(f(0))} ⊆ C0((−1, 0], A)⊕ C0([0, 1), B).

Then the canonical embedding k : SB → T gives an isomorphism k∗ : F (SB)→
F (T ) since the quotient is contractible. Also, the map SA ∼= C0((−1, 0), A)→ T

is homotopic to the composite SA
Sq−→ SB

k−→ T . So exactness at SB follows
from half-exactness applied to

0 −→ C0((−1, 0), A) −→ T −→ Cq −→ 0.

It is easy to check that the maps match up correctly. �

Analogously, we have:

Theorem 21.4.4. Let F be an additive, homotopy-invariant , exact functor from
S to an additive category A. Then F has long exact sequences: if 0 −→ J

j−→
A

q−→ B −→ 0 is a short exact sequence in S, then there is a natural long exact
sequence

· · · j∗−→ F (SA)
q∗−→ F (SB) ∂−→ F (J)

j∗−→ F (A)
q∗−→ F (B).

21.5. Applications to KK-Theory

We finish by explicitly stating the principal results of this section in the special
case of the KK-groups.

Theorem 21.5.1 (Mayer–Vietoris). (a) Let

P
g1 - A1

A2

g2
? f2 - D

?
f1
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be a pullback diagram of separable nuclear C∗-algebras. Then, for any σ-unital
C∗-algebra B, the following six-term sequence is exact :

KK(D,B)
(−f∗1 , f∗2 )- KK(A1, B)⊕KK(A2, B)

g∗1 + g∗2- KK(P,B)

KK1(P,B)

6

�g
∗
1 + g∗2 KK1(A1, B)⊕KK1(A2, B) �

(−f∗1 , f∗2 )
KK1(D,B)

?

(b) Let

P
g1 - B1

B2

g2
? f2 - D

?
f1

be a pullback diagram of σ-unital nuclear C∗-algebras. Then for any separable
C∗-algebra A, the following six-term sequence is exact :

KK(A,P )
(g1∗, g2∗)- KK(A,B1)⊕KK(A,B2)

f2∗ − f1∗- KK(A,D)

KK1(A,D)

6

�f2∗ − f1∗
KK1(A,B1)⊕KK1(A,B2) �

(g1∗, g2∗)
KK1(A,P ).

?

Both sequences are natural with respect to morphisms of pullback diagrams.

Theorem 21.5.2. Let B be a σ-unital C∗-algebra, and let A = lim−→An be
a countable inductive limit of separable C∗-algebras. Then there is a natural
Milnor lim1-sequence

0 −→ lim1

←− KK1(An, B) −→ KK(A,B) −→ lim←−KK(An, B) −→ 0

There is no reasonable relationship between KK(A, lim−→Bn) and lim−→KK(A,Bn)
in general (19.7.2).

See [Rosenberg 1982b; Schochet 1984a] for more detailed analysis of the prop-
erties of homology and cohomology theories on C∗-algebras. See [Nagy 1995;
Dădărlat 1994] for nonstable homology theories.

22. Axiomatic K-Theory

In this section, we will give a universal categorical construction of KK-theory,
and show that K-theory can be characterized by a simple set of axioms (at least
for a suitably well-behaved class of C∗-algebras). The ideas of this section are
primarily due to Cuntz [1984] and Higson [1983], based in part on earlier results
of Rosenberg [1982b].

Throughout this section, we will only consider separable trivially graded C∗-
algebras. For unexplained terminology and results from category theory, the
reader may consult [MacLane 1971].
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22.1. KK as a Category

We begin with a categorical description ofKK. Let KK be the category whose
objects are separable (trivially graded) C∗-algebras, and for which the morphisms
from A to B are the elements of KK(A,B). Composition of morphisms is via the
intersection product. KK is an additive category. There is an obvious functor
from the category SC∗ of all separable C∗-algebras and ∗-homomorphisms to
KK, which has the coproduct property:

Definition 22.1.1. Let F be a functor (covariant or contravariant) from SC∗

to a category A. Then F has the coproduct property (CP) if for every split short
exact sequence

0 - A
j
- D �

s

p
- B - 0

in SC∗, the morphisms Fj and Fs make F (D) a coproduct of F (A) and F (B)
in A. [If F is contravariant, F (D) should be a product of F (A) and F (B).]

If A is an additive category, then F is automatically additive, and there is
a A-morphism π : F (D) → F (A) [π : F (A) → F (D) in the contravariant case]
making F (D) the biproduct of F (A) and F (B). So if A is additive, F has the
coproduct property if and only if F sends split exact sequences to split exact
sequences.

In KK, the morphism π is πs, defined in 17.1.2(b).

Proposition 22.1.2. A functor satisfying (H ) and (HX ) has the coproduct
property .

Proof. Follows immediately from 21.4.3. �

We will construct a universal enveloping additive category with the coproduct
property, and show it is isomorphic to KK. First, let S be the category whose
objects are C∗-algebras for which the morphisms from A to B are the homotopy
classes of ∗-homomorphisms from A to B ⊗K, denoted [A, B ⊗K]. Morphisms
are composed as follows: if φ : A → B ⊗ K and ψ : B → D ⊗ K, then ψφ is
(ψ ⊗ 1K) ◦ φ : A → B ⊗ K → D ⊗ K ⊗ K ∼= D ⊗ K. Since there is only one
∗-isomorphism from K to K up to homotopy, composition is well defined. The
morphism [ηA] : A → A, where ηA : A → A ⊗ K sends a to a ⊗ p, p a one-
dimensional projection, is the identity morphism on A; the same map, regarded
as a morphism κA from A to A⊗K, is an isomorphism in S. So the morphisms
in S from A to B could have been defined to be [A ⊗ K, B ⊗ K] with ordinary
composition. (The construction of S is an example of the construction of the
Kleisli category of a monad [Higson 1983, § 3; MacLane 1971, VI.5].)

There is an obvious functor from the category SC∗ to S.
Let F be a functor from SC∗ to any other category, which satisfies (H) and

(S) of Section 21. Then F factors in an obvious way through S, so that F may be
regarded as a functor on S. In particular, K0, K1, Ext , and more generally KK
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(for a fixed first or second argument) may be regarded as functors on S. In fact,
there is an obvious functor from S to KK implementing these other functors.

There is an additive structure on the Hom-sets of S, defined as in 15.6 (cf.
[Rosenberg 1982b]). The canonical functor from S to KK is additive and has
the coproduct property.

22.2. Universal Enveloping Categories

If A is any category with an additive structure, then there is a standard con-
struction of a universal enveloping additive category L, with the property that
any additive functor from A to another category, with the coproduct property,
factors through L. The only restriction on A is that it be small enough to
avoid logical difficulties; it is enough that A have a small skeletal subcategory
A0. This assumption implies that there is a set {Bγ} of small additive cate-
gories and additive covariant functors Fγ from A0 to Bγ with the coproduct
property, such that if F is any additive covariant [resp. contravariant] func-
tor with the coproduct property from A0 to a category B, there is a subcate-
gory of B isomorphic [resp. anti-isomorphic] to one of the Bγ , with F isomor-
phic [resp. anti-isomorphic] to Fγ . Let L′ be the smallest additive subcategory
of
∏

Bγ with objects {
∏
Fγa : a ∈ Ob(A)} and containing the morphisms

{
∏
Fγφ : φ ∈ Hom(A)} and {

∏
πγ} for each split short exact sequence, where

πγ is the splitting morphism in Bγ . Now define L to be the category whose
objects are the objects of A and for which L(a, b) = L′(

∏
Fγa0,

∏
Fγb0), where

a0, b0 are the objects of A0 isomorphic to a and b respectively.
We now fix L to be the category obtained by applying the above construction

to S. L is an additive category whose objects are separable C∗-algebras. Any
functor with (CP) from S to any additive category factors through L; hence any
functor from SC∗ satisfying (H), (S), and (CP) factors through L. In particular,
there is a functor F from L to KK induced from the canonical functor from S
to KK.

Theorem 22.2.1. F is an isomorphism of categories.

Proof. The objects of L and KK are the same, and F induces the identity map
on objects. Thus to prove the theorem it is enough to prove that for each fixed A
the natural transformation β, defined by F between the functors B → L(A,B)
and B → KK(A,B) from SC∗ to Ab, the category of abelian groups, has a
(natural) inverse.

To define the inverse α, fix B (as well as A), and let x ∈ KK(A,B). Let
[φ(0), φ(1)] be a quasihomomorphism representing x. Then there is a canonically
associated split exact sequence as in 17.8.3, such that x is the composition of an
ordinary homomorphism and the splitting morphism. Let α(x) be the morphism
of L which is the composition of the corresponding homomorphism and splitting
morphism. This α is obviously the inverse of β; we need only show that α is well
defined.
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If [φ(0), φ(1)] is degenerate, i.e. φ(0) = φ(1), then the corresponding morphism
of L is zero by the coproduct property. And if [φ(0)

0 , φ
(1)
0 ] and [φ(0)

1 , φ
(1)
1 ] are ho-

motopic in the sense of 17.6.3, i.e. there is a quasihomomorphism [φ(0), φ(1)] from
A to IB implementing the homotopy, then α([φ(0)

i , φ
(1)
i ]) = f̃i◦α([φ(0), φ(1)]),

where f̃i, for i = 0, 1, is the L-morphism corresponding to the homomorphism
fi : IB → B of evaluation at i. But f0 and f1 are homotopic, so f̃0 = f̃1.
The equivalence relation on KK(A,B) is generated by homotopy and addition
of degenerates; so α is well defined. �

22.3. Functors on KK and Axiomatic K-Theory

The following is an immediate corollary of 22.2.1:

Corollary 22.3.1. Let F be a covariant [resp. contravariant ] functor from
SC∗ to any additive category , satisfying (H ), (S ), and (CP). Then F factors
canonically through KK. So for any such functor , there is a pairing F (A) ×
KK(A,B)→ F (B) [resp. KK(A,B)× F (B)→ F (A)] which is compatible (as-
sociative) with the intersection product . Any such functor satisfies Bott period-
icity : F (A) ∼= F (S2A) for any A.

An elegant direct proof of the last two statements can be found in [Cuntz 1984]
(cf. 9.4.2), based on the fact that the Toeplitz algebra is KK-equivalent to C.
This proof is unnecessary for us because of the categorical approach we have
taken above. (Actually the result here is slightly more general since the functors
of [Cuntz 1984] are covariant functors to the category Ab; but the general result
can be established with the same proof.)

Corollary 22.3.2. Let F be an additive functor from S to Ab satisfying (H ),
(S ), and (HX ). Then the associated homology or cohomology theory satisfies Bott
periodicity , and the long exact sequence becomes a cyclic six-term exact sequence.

We now wish to describe K-theory by a set of axioms. To do this, we consider
covariant functors F from SC∗ to Ab satisfying (H), (S), and (CP). The “canon-
ical” examples (maybe the universal examples) of such functors are the functors
KA,B , where KA,B(D) = KK(A, D⊗B), with A,B fixed. We have KC,C = K0.

There are two additional axioms which K0 satisfies, continuity and the di-
mension axiom

(D) F (C) = Z, F (C0(R)) = 0.

In addition, K0 satisfies (HX), which, in the presence of (H), is stronger than
(CP) (22.1.2).

Proposition 22.3.3. Let F be a covariant functor from SC∗ to Ab satisfying
(H ), (S ), (CP), and (D). Then there is a natural transformation from K0 to
F . If F satisfies (HX ), then this natural transformation extends to a natural
transformation from K1 to F1; the natural transformations are compatible with
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suspensions and , if F satisfies (HX ), with the connecting maps in the six-term
exact sequences.

Proof. Let f be a generator of F (C). Associate to x ∈ K0(A) = KK(C, A)
the element fx ∈ F (A) coming from the pairing F (C)×KK(C, A)→ F (A). It
is easy to verify that this association gives a natural transformation. �

If F is a covariant functor from SC∗ to Ab satisfying (H), (S), (HX) [or just
(CP)], (C), and (D), it is plausible (but unknown) that F agrees with K0. It is
not clear how to begin to approach the general problem. However, it is possible
to prove by “bootstrap” methods that F must agree with K0 on at least a
substantial subcategory, one which seems to contain all C∗-algebras of interest.

Definition 22.3.4. Let N be the smallest class of separable nuclear C∗-algebras
with the following properties:

(N1) N contains C.
(N2) N is closed under countable inductive limits.
(N3) If 0 → A → D → B → 0 is an exact sequence, and two of the terms are

in N , then so is the third.
(N4) N is closed under KK-equivalence.

Let H be the smallest class of separable C∗-algebras closed under the same
operations (H1)–(H4). Let N0 (resp. H0) be the smallest class of separable
nuclear (resp. separable) C∗-algebras closed under (N2), (N4), and

(N1′) N0 contains C and C0(R).
(N3′) If 0 → A → D → B → 0 is a split exact sequence, and two of the terms

are in N0, then so is the third.

Let NC∗ (resp. HC∗, nC∗, hC∗) be the full subcategory of SC∗ whose objects
are the C∗-algebras in N (resp. H, N0, H0).

We will show later (23.10.3, 23.10.4) that N is just the smallest class of nu-
clear C∗-algebras containing the commutative C∗-algebras and closed under
KK-equivalence, and that N0 exactly consists of the algebras in N with torsion-
free K-theory. H appears to be larger than just the class of C∗-algebras KK-
equivalent to algebras in N , because of being closed under property (H3). It will
be necessary to distinguish between H and N in section 23.
N is often called the bootstrap category. However, this terminology is not

uniform: some authors use the term “bootstrap category” to mean a (possibly)
smaller category closed under a different set of properties such as (N1)–(N3) and
crossed products by Z. N is also precisely the category of all separable nuclear
C∗-algebras A which satisfy the conclusion of the Universal Coefficient Theorem
(23.1.1) for all B. The C∗-algebras in H do not appear to always satisfy the
UCT for every B, since KK(A,−) is (probably) not exact in general for A ∈ H;
but the analogous class with KK-equivalence replaced by E-equivalence gives
the class of A for which the E-theory UCT holds for every B (25.7.5).
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22.3.5. All the algebras in N are nuclear; however, the class N contains most
C∗-algebras which arise “naturally”:

(a) All classes are closed under stable isomorphism by (N4).
(b) N0 is closed under split extensions by (N3′), and in particular under direct

sums. Thus all finite-dimensional C∗-algebras are in N0. So N0 contains all
AF algebras.

(c) N0 contains C([0, 1]n), which is homotopy-equivalent (and thus KK-equiv-
alent) to C. N0 also contains C0(Rn), which is KK-equivalent to C or C0(R).
So N0 also contains C(Sn) by (N3′).

(d) N contains C(X) for every finite simplicial complex X. Since every compact
space is an inverse limit of simplicial complexes, C(X) ∈ N for every compact
X. By (N3), N also contains C0(X) for every locally compact X. Thus N
contains all (separable) commutative C∗-algebras.

(e) N contains all type I C∗-algebras; hence also all inductive limits of type I
C∗-algebras (any stable type I C∗-algebra can be built up by extensions and
inductive limits from C∗-algebras of the form C0(X)⊗K).

(f) N and N0 are closed under tensor products, since if B is built up from C
by the operations (N2)–(N4), then A⊗B can be built up from A⊗C by the
same sequence of operations. It is not clear that H and H0 are closed under
minimal tensor products, since the minimal tensor product is not exact in
general; but they are closed under maximal tensor products (maximal tensor
products preserve KK-equivalence by [Skandalis 1988].)

(g) All these classes are closed under crossed products by R by 19.3.6. H and N
are also closed under crossed products by Z because of the Toeplitz extension.
So N contains the Cuntz algebras On (10.11.8), since On⊗K can be written as
a crossed product of an AF algebra by Z. More generally, the Cuntz–Krieger
algebras OA (10.11.9) are all in N .

(h) All the classes are closed under crossed products by simply connected solv-
able Lie groups by successive applications of (f).

(i) It is, however, not clear that any of these classes are closed under crossed
products by finite cyclic groups or by T (23.15.12).

H contains many nonnuclear C∗-algebras such as C∗(Fn) and C∗r (Fn), where
Fn is the free group on n generators, since these C∗-algebras are KK-equivalent
to commutative C∗-algebras. In fact, it may be that H contains all separable
C∗-algebras. See 23.13 for further comments on this question.

Theorem 22.3.6. Let F be a covariant functor from HC∗ to Ab, satisfying
(H ), (S ), (HX ), (C ), and (D). Then F = K0. If F is a covariant functor from
hC∗ to Ab, satisfying (H ), (S ), (CP), (C ), and (D), then F = K0.

Proof. Let H ′ be the class of C∗-algebras for which the natural transformation
of 22.3.3 is an isomorphism. By (D), H ′ contains C and C0(R), and by (C) it is
closed under inductive limits. Since F factors through KK by 22.3.1, H ′ is closed
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under KK-equivalence. If F satisfies (HX), H ′ is closed under the procedure of
(H3); in F satisfies (CP) it is closed under (H3′). Thus H ′ contains H0, and
contains H if F satisfies (HX). �

Thus, at least on the class H, K0 is completely characterized by homotopy in-
variance, stability, half-exactness, continuity, and normalization. On the smaller
class H0, half-exactness may be weakened to split exactness.

If (D) is replaced by a similar axiom stating that F (C) =0 and F (C0(R)) = Z,
one obtains an axiomatic characterization of K1. One can similarly characterize
the functors KA,B , as long as A and B are in N and have free abelian K-groups.
The Universal Coefficient Theorem explains what axioms must be taken in the
general case (the continuity axiom may fail, for example).

It is more difficult to axiomatize the contravariant functor K0, since there is no
satisfactory analog of the continuity axiom (C). There is a natural lim1-sequence
which may be used as a substitute (21.3.2). The difficulty is analogous to the
difficulty of axiomatizing homology on general compact spaces, as opposed to
cohomology. (There is a theory of “the contravariant functor dual to a homology
theory” which can be used, due to D. Andersson, P. Kainen, and Z. Yosimura,
which is relevant to this problem; cf. [Madsen and Rosenberg 1988].)

22.4. EXERCISES AND PROBLEMS

22.4.1. Let F be a functor on the category of all C∗-algebras (or a suitable
subcategory) satisfying (S), (CP), and

(U) If α is an inner automorphism of A, then α∗ : F (A)→ F (A) is the identity.

Then F satisfies (H) [Higson 1988]. Conversely, a functor satisfying (S) and (H)
satisfies (U) (use 3.4.1).

22.4.2. Ordinary Eilenberg–Steenrod cohomology with compact supports de-
fines a continuous homology theory {hn} on the category of commutative C∗-
algebras by hn(C0(X)) = Hn

c (X). This theory satisfies the (Eilenberg–Steenrod)
dimension axiom

(ESD) h0(C) = Z, hn(C) = 0 for n > 0.

Show from 22.3.6 and 21.2.1 that this homology theory cannot extend to a stable
continuous homology theory on HC∗. Thus to define “ordinary cohomology” for
any reasonable class of noncommutative C∗-algebras one of the axioms must be
discarded. The most reasonable ones to discard are (S) and (HX). The next
problem considers a weakening of (HX); see [Dădărlat 1994] for theories not
satisfying (S). [Property (S) is a very natural axiom when dealing with arbitrary
C∗-algebras because of the fact that stable isomorphism coincides with strong
Morita equivalence for σ-unital C∗-algebras (13.7.1).]

22.4.3. A relative homology theory on a (suitable) category S of C∗-algebras is
a sequence {hn} of covariant functors from pairs (A, J) to abelian groups, where
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A is a C∗-algebra in S and J is a closed two-sided ideal in A [a morphism from
(A, J) to (B,K) is a ∗-homomorphism φ : A → B with φ(J) ⊆ K], satisfying
(H) (appropriately modified in the obvious way) and

(LX) For any pair (A, J) there is a long exact sequence

· · · ∂−→ hn(A, J)
j∗−→ hn(A,A)

q∗−→ hn(A/J,A/J) ∂−→ hn−1(A, J) −→
· · · −→ h0(A/J,A/J).

The long exact sequence is natural.

(WEX) (weak excision) If K is an ideal of A orthogonal to J , then the map
A→ A/K induces an isomorphism hn(A, J) ∼= hn(A/K, J/K) for all n.

A relative homology theory is stable [resp. continuous] if it satisfies the appro-
priately modified version of (S) [resp. (C)].

The dimension axiom is

(ESD) h0(C,C) = Z; hn(C,C) = 0 for n > 0.

(a) Show that a relative homology theory on the category of unital commutative
C∗-algebras is exactly a cohomology theory on compact pairs (X,Y ), in the sense
of Eilenberg–Steenrod. (X,Y ) corresponds to (A, J), where A = C(X) and J

is the ideal of all functions vanishing on Y . So if {hn} is a continuous relative
homology theory satisfying (ESD) on a category containing all unital separable
commutative C∗-algebras, then for any pair (C(X), J) as above, hn(C(X), J) =
Hn(X,Y ).

(b) If {hn} is a continuous stable relative homology theory satisfying (ESD) on
a category containing all unital AF algebras, then for any pair (A, J) with A

unital AF, h0(A, J) = K0(J), hn(A, J) = 0 for n > 0.

(c) There is a unital AF algebra A and a unital embedding φ : C(T2)→ A such
that φ∗ : K0(C(T2))→ K0(A) is injective [Loring 1986]. (Similar embeddings for
irrational rotation algebras were obtained in [Pimsner and Voiculescu 1980b].)

(d) If S is a full subcategory of SC∗ containing all separable commutative unital
C∗-algebras and closed under stable isomorphism and countable inductive lim-
its, then there is no continuous stable relative homology theory on S satisfying
(ESD). So ordinary cohomology (or even rational cohomology) on spaces cannot
be extended to a stable theory on the most restricted natural class of noncom-
mutative C∗-algebras. (Use (a), (b), (c), and the Chern character (1.6.6).)

22.4.4. (a) If {hn} is a continuous relative homology theory and (A, J) is a pair
with A unital and Prim(J) (regarded as an open subset of Prim(A)) a union
of closed sets (in particular, if Prim(A) is Hausdorff), then {hn} satisfies strong
excision for (A, J): the inclusion map (J+, J)→ (A, J) induces an isomorphism
on h∗. (Use weak excision and continuity.)
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(b) If {hn} is a relative homology theory satisfying strong excision for all pairs,
then hn(A, J) depends only on J , and {hn} defines a homology theory by
hn(J) = hn(J+, J). Conversely, any homology theory defines a relative ho-
mology theory satisfying strong excision by hn(A, J) = hn(J) (cf. 5.4).

(c) Let T be the Toeplitz algebra (9.4.2). If {hn} is a relative homology theory
satisfying (ESD) (on a suitably large category of C∗-algebras) which has a Chern
character, i.e.

⊕
n even hn(B,B) ⊗ Q ∼= K0(B) ⊗ Q,

⊕
n odd hn(B,B) ⊗ Q ∼=

K1(B)⊗Q for all B, then h0(T,K) = 0, h2(T,K) ∼= Z, so {hn} does not satisfy
strong excision for (T,K).

(d) Does there exist a continuous stable relative homology theory on noncom-
mutative C∗-algebras which does not satisfy strong excision?

23. Universal Coefficient Theorems and Künneth Theorems

In this section, we establish several results which allow computation of KK-
groups (and, therefore, K-groups) of “nice” C∗-algebras. Among other things, we
prove that KK-equivalence is completely determined by isomorphism of the K0

and K1 groups for C∗-algebras in the class N defined in 22.3.4, and consequently
that any C∗-algebra in N is KK-equivalent to a commutative C∗-algebra. The
results of this section are due to Rosenberg and Schochet [1987; Schochet 1982],
based on earlier work by L. Brown [1984]. Cuntz had also previously obtained
the Universal Coefficient sequence for the OA.

All C∗-algebras in this section will be separable and trivially graded. We
will consider K-theory and KK-theory to be Z2-graded theories in order to
simplify notation: KK∗(A,B) will denote KK(A,B)⊕KK1(A,B), and similarly
K∗(A) = K0(A) ⊕ K1(A), K∗(A) = K0(A) ⊕ K1(A). If G and H are graded
abelian groups, then Hom(G,H) is also graded by degree-preserving/degree-
reversing maps. A tensor product of abelian groups is, of course, the ordinary
tensor product over Z. A tensor product of graded groups has a natural grading
defined as in the C∗-algebra case (14.4).

23.1. Statements of the Theorems

For any separable C∗-algebras A and B, there are maps

α : K∗(A)⊗K∗(B)→ K∗(A⊗B),

β : K∗(A)⊗K∗(B)→ KK∗(A,B),

γ : KK∗(A,B)→ Hom(K∗(A),K∗(B))

which are natural in A and B.
These maps are defined using the intersection product. α comes from the

pairing KK∗(C, A) × KK∗(C, B) → KK∗(C, A ⊗ B). More specifically, α is
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induced by the four pairings

KK(C, A)×KK(C, B)→ KK(C, A⊗B),

KK(C0(R), A)×KK(C, B)→ KK(C0(R), A⊗B)

KK(C, A)×KK(C0(R), B)→ KK(C0(R), A⊗B)

KK(C0(R), A)×KK(C0(R), B)→ KK(C0(R2), A⊗B) ∼= KK(C, A⊗B)

The map β comes from the pairing KK∗(A,C)×KK∗(C, B)→ KK∗(A,B).
Finally, γ is the adjoint of the pairing KK∗(C, A)×KK∗(A,B)→ KK∗(C, B).

When A = B, KK∗(A,A) is a graded ring, and γ is a ring-homomorphism (if
the intersection product is written composition-style).

The surjectivity of β measures to what extent a general KK-element factors
through C or C0(R) (or through C(S1), which is KK-equivalent to C⊕C0(R)).

It is not necessary to use KK-theory to define α, β, or γ. α has a straightfor-
ward K-theoretic definition (which actually defines a map from K∗(A)⊗K∗(B)
to K∗(A⊗maxB)), and for β everything may be rephrased in terms of the pairing
between K-theory and “K-homology” (16.3.2, 18.10.3). γ has a nice interpreta-
tion in terms of extensions, which could be taken as an alternate definition. If
τ ∈ KK1(A,B) is represented by the extension

0 −→ B −→ D −→ A −→ 0

then γ(τ) is given by the connecting maps in the associated six-term exact se-
quence of K-theory. (If B = K, then γ is the map γ∞ of 16.3.2.)

One might hope that α, β, and γ would be isomorphisms, but they cannot
be in general for (essentially) homological algebra reasons. If the sequences are
modified in the appropriate way to incorporate the homological algebra obstruc-
tions, sequences are obtained which are valid at least for C∗-algebras in N .

The additional ingredient is easiest to describe in the case of γ. If γ(τ) = 0
for an extension τ , then the six-term K-theory sequence degenerates into two
short exact sequences of the form

0 −→ Ki(B) −→ Ki(D) −→ Ki(A) −→ 0

and thus determines an element κ(τ) ∈ Ext1
Z(K∗(A),K∗(B)) [this is the Ext1

Z-
group of homological algebra, the derived functor of the Hom functor, not the
Ext-group of Chapter VII.] Note that κ reverses degree. The maps γ and κ are
generalizations of the Adams d and e operations in topological K-theory.

The obstruction for α and β is an element of TorZ
1 , the derived functor of the

tensor product functor. It is natural to expect a TorZ
1 obstruction, since TorZ

1

measures the deviation from exactness of the tensor product functor on groups.
The statements of the theorems are as follows.

Theorem 23.1.1 (Universal Coefficient Theorem (UCT)). [Rosenberg
and Schochet 1987] Let A and B be separable C∗-algebras, with A ∈ N . Then
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there is a short exact sequence

0 −→ Ext1
Z(K∗(A),K∗(B)) δ−→ KK∗(A,B)

γ−→ Hom(K∗(A),K∗(B)) −→ 0

The map γ has degree 0 and δ has degree 1. The sequence is natural in each
variable, and splits unnaturally . So if K∗(A) is free or K∗(B) is divisible, then
γ is an isomorphism.

Theorem 23.1.2 (Künneth Theorem (KT)). [Rosenberg and Schochet 1987]
Let A and B be separable C∗-algebras, with A ∈ N , and suppose K∗(A) or K∗(B)
is finitely generated . Then there is a short exact sequence

0 −→ K∗(A)⊗K∗(B)
β−→ KK∗(A,B)

ρ−→ TorZ
1 (K∗(A),K∗(B)) −→ 0.

The map β has degree 0 and ρ has degree 1. The sequence is natural in each
variable, and splits unnaturally . So if K∗(A) or K∗(B) is torsion-free, β is an
isomorphism.

Theorem 23.1.3 (Künneth Theorem for Tensor Products (KTP)).

[Schochet 1982] Let A and B be C∗-algebras, with A ∈ N . Then there is a short
exact sequence

0 −→ K∗(A)⊗K∗(B) α−→ K∗(A⊗B) σ−→ TorZ
1 (K∗(A),K∗(B)) −→ 0.

The map α has degree 0 and σ has degree 1. The sequence is natural in each
variable, and splits unnaturally . So if K∗(A) or K∗(B) is torsion-free, α is an
isomorphism.

The names given to these theorems reflect the fact that they are analogs of
the ordinary Universal Coefficient Theorem and Künneth Theorem of algebraic
topology. The UCT can also be regarded as a theorem about K-theory with
coefficients; see 23.15.6 and 23.15.7.

The KT and especially the KTP can be stated and proved without reference
to KK-theory. The proofs, however, are similar to and require some of the same
machinery as the proof of the UCT, so it is most efficient to consider all three
together.

The strategy of proof for all three theorems will be the same. We will first
prove the theorems by bootstrap methods for arbitrary A, with fixed B of a
form making α, β, γ isomorphisms. Then we will deduce the general results by
“abstract nonsense”, using an appropriate exact sequence giving a resolution of
a general B into ones of the special form.

23.2. Proof of the Special UCT

We first prove the UCT in the case where K∗(B) is divisible. We must show
that if A ∈ N and B is separable with divisible K-groups, then γ is an isomor-
phism. We will fix B, and vary A according to the defining properties of N .

Proposition 23.2.1. If K∗(B) is divisible, then Hom(K∗( · ),K∗(B)) is a σ-
additive (in fact completely additive) cohomology theory on C∗-algebras (21.1.1).
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Proof. K∗( · ) is a σ-additive homology theory by 21.1.2(a). If K∗(B) is di-
visible, then Hom( · ,K∗(B)) is an exact functor, so Hom(K∗( · ),K∗(B)) is a
cohomology theory; it is σ-additive since Hom transforms direct sums in the
first variable into direct products. �

KK∗( · , B) is also a σ-additive cohomology theory on separable nuclear C∗-
algebras by 21.1.2(c) (with no restriction on B except that it be σ-unital). γ is
a natural transformation between the theories.

Let N ′ be the smallest class of separable C∗-algebras A for which γ(A,B) is
an isomorphism. N ′ contains C since KKi(C, B) = Ki(B) = Hom(Z,Ki(B)).
A simple application of the Five Lemma to the long exact cohomology sequences
shows that if two of A, J , and A/J are in N ′, then so is the third, so N ′ is closed
under (N3). A similar application of the Five Lemma to the lim1-sequences,
which exist by 21.3.2, yields that N ′ is closed under inductive limits. And the
naturality of γ with respect to the intersection product shows that N ′ is closed
under KK-equivalence. Thus N ′ contains N , and the special case of the UCT
is proved.

23.3. Proof of the Special KT

We now prove the special case of the Künneth Theorem. We will show that
if A ∈ N and K∗(B) is finitely generated and free, then β is an isomorphism.

Proposition 23.3.1. If K∗(B) is torsion-free, then K∗( · )⊗K∗(B) is a coho-
mology theory , and β( · , B) is a natural transformation of cohomology theories.
If K∗(B) is finitely generated , then K∗( · ) ⊗K∗(B) is a σ-additive cohomology
theory .

Proof. Tensoring with a torsion-free abelian group G is exact, and preserves
products if G is finitely generated. �

Fix B with K∗(B) finitely generated and free. Let N ′ be the smallest class of
separable C∗-algebras A for which β(A,B) is an isomorphism. N ′ contains C as
for the UCT. Applying the Five Lemma to the long exact cohomology sequences
and the lim1-sequences shows that N ′ is closed under (N2) and (N3), and the
naturality of β shows that N ′ is closed under KK-equivalence. Thus N ′ contains
N , and the special case of the KT is proved.

23.4. Proof of the Special KTP

Finally, we prove the special case of the Künneth Theorem for tensor products.
Let B be a C∗-algebra with torsion-free K-theory, and let N ′ be the class of all
C∗-algebras A for which α(A,B) is an isomorphism. N ′ obviously contains C.
If A = lim−→An, then A⊗B = lim−→(An⊗B), so if each An is in N ′, then A is too
since K-theory commutes with inductive limits. So N ′ is closed under (N2). If
two of A, J , A/J are in N ′, tensor the six-term K-theory exact sequence for A
and J with K∗(B); the resulting sequence remains exact since K∗(B) is torsion-
free. Apply the Five Lemma (using the naturality of α) to conclude that the
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remaining algebra is in N ′, so N ′ is closed under (N3). N ′ is obviously closed
under KK-equivalence. So N ′ contains N .

23.5. Geometric Resolutions of C∗-Algebras

In order to prove the general theorems, we must have a way of realizing a
projective or injective resolution of the K-groups of a C∗-algebra by means of
maps on the C∗-level. Given a C∗-algebra B, we seek a short exact sequence of
C∗-algebras, containing B, with the property that the associated K-theory six-
term exact sequence separates into two short exact sequences giving a (projective
or injective) resolution of K∗(B).

If B is a general separable C∗-algebra, it is not difficult to construct geometric
projective and injective resolutions for S2B ⊗ K. This will be sufficient for our
purposes, since all of the groups considered in the theorems are invariant under
KK-equivalence.

The first step in constructing a geometric projective resolution is the following
proposition.

Proposition 23.5.1. Let B be a separable C∗-algebra. Then there is a separable
commutative C∗-algebra F , whose spectrum consists of a disjoint union of lines
and planes, and a homomorphism φ : F → SB ⊗ K, such that φ∗ : K∗(F ) →
K∗(SB) is surjective. If K∗(B) is finitely generated , we may require that K∗(F )
be finitely generated .

Proof. Choose a set of generators for K1(B). Each generator can be repre-
sented by a unitary in Mn(B)+ for some n, and hence by a ∗-homomorphism from
C0(R) into Mn(B). Thus, if F0 = C0(X0), where X0 is a disjoint union of lines,
one for each generator, there is a ∗-homomorphism φ0 from F0 to B ⊗ K such
that φ0∗ : K1(F0) → K1(B) is surjective. We have K0(F0) = 0. Do the same
construction starting with SB to obtain an F1 whose spectrum is a disjoint union
of lines, and a ∗-homomorphism φ1 : F1 → SB⊗K with φ1∗ : K1(F1)→ K1(SB)
surjective. Set F = SF0 ⊕ F1. Then φ = Sφ0 ⊕ φ1 : F → SB ⊗K ⊕ SB ⊗K ⊆
M2(SB ⊗K) ∼= SB ⊗K has the required properties. �

Note that the K-groups of F are free abelian groups.
Now construct the geometric projective resolution for B as follows. Replace

B by S2B ⊗ K if necessary, and find an F as in 23.5.1 and a map φ : F → B

with φ∗ surjective. The mapping cone sequence

0 −→ SB −→ Cφ −→s F −→ 0

(which is semisplit) has associated K-theory sequence which degenerates to

0 −→ Ki(Cφ)
s∗−→ Ki(F ) −→ Ki−1(SB) −→ 0

since φ∗ is surjective. This last sequence gives a projective (free) resolution of
K∗(B).

To obtain an injective resolution, we first need an injective version of 23.5.1:
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Proposition 23.5.2. Let B be a separable C∗-algebra. Then there exists a
separable C∗-algebra D whose K-groups are divisible, and a ∗-homomorphism
ψ : SB → D such that ψ∗ : K∗(B)→ K∗(D) is injective.

Proof. Let F and φ be as in 23.5.1, and let s : Cφ → F be the standard map.
Let R be the UHF algebra whose dimension group is Q (7.5), RF = F ⊗ R,
and t : F → RF given by t(x) = x ⊗ 1. Then K∗(RF ) ∼= K∗(F ) ⊗ Q (RF
is an inductive limit of matrix algebras over F ), and t∗ : K∗(F ) → K∗(RF )
is injective. The mapping cone sequence for ts : Cφ → F ⊗ R has associated
degenerate K-theory sequence

0 −→ K∗(Cφ)
(ts)∗−→ K∗(RF ) −→ K∗(Cts) −→ 0

since (ts)∗ is injective. This implies that the K-groups of D = Cts are divisible.
The naturality of the cone construction implies that there is a map of mapping
cone sequences

SCφ - SF - Cs - Cφ
s - F

SCφ
?

- SRF
?

- Cts
?
u

- Cφ
?

- RF
?
u

and hence a commuting diagram of short exact sequences

0

0 - K∗(Cφ) - K∗(F )
?

- K∗(Cs) - 0

0 - K∗(Cφ)

wwwww
- K∗(RF )

?
t∗

- K∗(Cts)
?
u∗

- 0

A simple diagram chase shows that u∗ : K∗(Cs)→ K∗(Cts) is injective.
Since SB ⊗ K is the kernel of s, we have that v∗ is an isomorphism, where

v : SB ⊗K → Cs is the natural map (19.4.1). Define ψ to be the composite

SB
w−→ SB ⊗K v−→ Cs

u−→ Cts = D.

Then ψ∗ is injective and K∗(D) is divisible. �

We now finish the construction of the injective resolution by again using a map-
ping cone construction. The mapping cone sequence of ψ is

0 −→ SD −→ Cψ −→ SB −→ 0

Since ψ∗ is injective, the associated K-theory sequence degenerates to two short
exact sequences

0 −→ Ki(SB) −→ K1−i(SD) −→ K1−i(Cψ) −→ 0
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The groups K∗(Cψ) are quotients of divisible groups, hence divisible; so we have
an injective resolution of K∗(SB).

It should be noted that the construction of projective and injective resolutions
for C∗-algebras is much simpler than the construction in topology, which involves
Grassmanians. The reason for the simplification is that it suffices to work stably
for KK-theory, and there is “much more room” (i.e. many more morphisms)
when one deals with stable C∗-algebras.

23.6. Proof of the General KTP

We now prove the exact sequences of the three theorems in the general case,
beginning with the KTP.

Proposition 23.6.1. Let A be a nuclear C∗-algebra. Suppose the KTP holds
for A and B whenever B is separable with torsion-free K-groups. Then the KTP
holds for A and B, for every separable B.

Proof. Let B be a separable C∗-algebra, which we may take to be stable
without loss of generality. Construct a geometric resolution

0 −→ SB −→ C
ν−→ F −→ 0

Since A is nuclear, the sequence

0 −→ A⊗ SB −→ A⊗ C µ−→ A⊗ F −→ 0

is also exact, where µ = 1⊗ ν. The associated K-theory exact sequence is

· · · −→ Ki(A⊗ C)
µ∗−→ Ki(A⊗ F ) −→ Ki(A⊗B)

−→ Ki−1(A⊗ C)
µ∗−→ Ki−1(A⊗ F ) −→ · · · .

From this we obtain the short exact sequences

0 −→ Coker(µ∗)i
ω−→ Ki(A⊗B) −→ Ker(µ∗)i−1 −→ 0.

Since we are using a free resolution of K∗(B), the sequence

0 −→ TorZ
1 (K∗(A),K∗(B)) −→ K∗(A)⊗K∗(C)

η−→ K∗(A)⊗K∗(F )

−→ K∗(A)⊗K∗(B) −→ 0

is exact, where η = 1 ⊗ ν∗. Since C and F have torsion-free K-theory, we may
replace K∗(A)⊗K∗(C) and K∗(A)⊗K∗(F ) by K∗(A⊗C) and K∗(A⊗F ) respec-
tively; this identification replaces η by µ∗. Thus Coker(µ∗) = K∗(A) ⊗K∗(B),
and Ker(µ∗) = TorZ

1 (K∗(A),K∗(B)). It is easy to check that ω corresponds to
α under these identifications. �
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23.7. Proof of the General KT

The proof of the general exact sequence in the KT is quite similar to the proof
of the KTP.

Proposition 23.7.1. Let A be a separable C∗-algebra. Suppose that for all
separable B with K∗(B) finitely generated and free, β(A,B) is an isomorphism.
Then for every separable B with finitely generated K-theory , the exact sequence
in the KT holds for A and B.

Proof. Let B be a separable C∗-algebra, which may be assumed stable without
loss of generality. Construct a geometric projective resolution

0 −→ SB −→ C
g−→ F −→ 0

With C and F separable C∗-algebras with finitely generated free K-groups. The
associated six-term exact KK-sequence becomes

· · · −→ KKi(A,C) ω−→ KKi(A,F ) −→ KKi(A,B) −→ KKi−1(A,C) −→ · · · ,

which unsplices to yield a short exact sequence

0 −→ Coker(ω) −→ KK∗(A,B) −→ Ker(ω) −→ 0.

We may replace KK∗(A,C) and KK∗(A,F ) by K∗(A) ⊗K∗(C) and K∗(A) ⊗
K∗(F ) respectively; with this identification ω becomes 1 ⊗ g∗. So Coker(ω) =
Coker(1⊗g∗)∼=K∗(A)⊗K∗(B) and Ker(ω) = Ker(1⊗g∗)∼= TorZ

1 (K∗(A),K∗(B))
(since we are working with a projective resolution of K∗(B)). Again, it is easy
to see that the maps match up properly. �

23.8. Proof of the General UCT

Finally, we use a geometric injective resolution to establish the general form
of the UCT exact sequence.

Proposition 23.8.1. Let A be a separable C∗-algebra. Suppose that for all
separable B with divisible K-groups, γ(A,B) is an isomorphism. Then for all
separable B, the exact sequence of the UCT holds for A and B.

Proof. Let B be separable and stable. Form a geometric injective resolution

0 −→ D
g−→ C −→ SB −→ 0

as in 23.5. The associated K-theory sequence degenerates to

0 −→ Ki(B) −→ Ki(D)
g∗−→ Ki(C) −→ 0,

which is an injective resolution of K∗(B). The six-term exact sequence of KK-
theory is

· · · −→ KKi(A,D) ω−→ KKi(A,C) −→ KKi(A,B) −→ KKi−1(A,D) −→ · · · ,
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which unsplices to two short exact sequences

0 −→ Coker(ω) −→ KKi(A,B) −→ Ker(ω) −→ 0.

By hypothesis we are allowed to replace KK∗(A,D) by Hom(K∗(A),K∗(D))
and KK∗(A,C) by Hom(K∗(A),K∗(C)); the map ω is replaced by Hom(1, g∗)
under this identification. Thus we have

Ker(ω) ∼= Ker(Hom(1, g∗)) ∼= Hom(K∗(A),K∗(B))

and Coker(ω) ∼= Coker(Hom(1, g∗)) ∼= Ext1
Z(K∗(A),K∗(B)). It is easy to check

that the map from KK∗(A,B) to Hom(K∗(A),K∗(B)) is the map γ. And al-
though it is not necessary for the proof, it is also easy to check that the map δ

from Ext1
Z(K∗(A),K∗(B)) is the inverse of the map κ defined in 23.1. �

23.9. Naturality

Although the maps α, β, γ in the theorems are clearly natural, there appears
to be a slight problem with the naturality of the other maps since the construction
of geometric resolutions is not functorial. However, a careful inspection of the
proofs shows that the induced maps between the kernels or cokernels (as the case
may be), which are natural, agree with the (obviously natural) maps between
Ext1

Z or TorZ
1 .

At least in the case of the UCT, the naturality can be seen another way: the
proof shows that the natural map κ : ker γ → Ext1

Z is an isomorphism, and its
inverse map δ is therefore also natural.

23.10. Some Corollaries

Before completing the proofs of the theorems, we obtain some corollaries of
the results proved so far. The first result is the rather surprising fact that the
K-groups of a C∗-algebra in N completely determine its KK-theory. Let N ′ be
the class of all C∗-algebras A for which the UCT holds for (A,D) for every D.

Proposition 23.10.1. Let A and B be in N ′, and let x ∈ KK(A,B) have
the property that γ(x) ∈ Hom(K∗(A),K∗(B)) is an isomorphism. Then x is a
KK-equivalence.

Proof. For any separable D the induced maps η : Hom(K∗(B),K∗(D)) →
Hom(K∗(A),K∗(D)) and θ : Ext1

Z(K∗(B),K∗(D)) → Ext1
Z(K∗(A),K∗(D)) are

isomorphisms, and by naturality we have a commutative diagram

0 - Ext1
Z(K∗(B),K∗(D)) - KK∗(B,D) - Hom(K∗(B),K∗(D)) - 0

0 - Ext1
Z(K∗(A),K∗(D))

?
θ

- KK∗(A,D)
?
( · ) ◦ x

- Hom(K∗(A),K∗(D))
?
η

- 0

Apply the Five Lemma to conclude that

x⊗B ( · ) : KK∗(B,D)→ KK∗(A,D)
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is an isomorphism. Taking D = A, we conclude that x has a right inverse. A
similar argument using naturality in the second argument shows that

( · )⊗A x : KK∗(D,A)→ KK∗(D,B)

is an isomorphism for all D. Taking D = B, we conclude that x also has a left
inverse. �

Corollary 23.10.2. Let A and B be C∗-algebras in N ′. If K∗(A) ∼= K∗(B),
then A and B are KK-equivalent .

So, for “nice” C∗-algebras, every isomorphism of the K-groups is implemented
by a KK-equivalence, and hence comes from a natural transformation.

Corollary 23.10.3. Let B be any (separable) C∗-algebra. Then there is a
(separable) commutative C∗-algebra C, whose spectrum has dimension at most
3, and an element x ∈ KK(C,B) for which γ(x) : K∗(C) → K∗(B) is an
isomorphism. We have that ( · )⊗C x : KK∗(A,C)→ KK∗(A,B) is an isomor-
phism for all A ∈ N ′. If B ∈ N ′, x is a KK-equivalence. We may choose C to
be of the form C0⊕C1, where K1(C0) = K0(C1) = 0. If K∗(B) is finitely gener-
ated , we may also choose C so that its spectrum is a finite complex of dimension
at most 3.

Proof. Since the map γ : KK∗(C,B) → Hom(K∗(C),K∗(B)) is surjective, it
is only necessary to find a commutative C∗-algebra of the specified form whose
K-groups are isomorphic to those of B. There is a standard way to construct a
C0 with specified K0 and trivial K1: choose a free resolution

0 −→ F1
f−→ F2 −→ K0(B) −→ 0;

let D1 and D2 each be a c0-direct sum of copies of S and φ : D1 → D2 with
φ∗ = f , and let C0 be the mapping cone of φ. The direct sum of one such
algebra with the suspension of another gives an algebra of the required form
with arbitrary K-theory. The proof that ( · )⊗C x is an isomorphism is identical
to the proof of 23.10.1, using naturality in the second variable. �

Thus, from the point of view of KK-theory, every C∗-algebra in N might as well
be commutative. So without additional structure K-theory and KK-theory give
only a very weak invariant.

Corollary 23.10.4. Let A be a C∗-algebra in N with torsion-free K-theory .
Then there are simple AF algebras A0 and A1 such that A is KK-equivalent to
A0 ⊕ SA1. So A is in the class N0 (22.4.5).

Proof. Any countable torsion-free abelian group G can be embedded as an
additive subgroup of R; the image is dense unless G = Z. If Ki(A) = Z, set
Ai = C; otherwise embed Ki(A) into R and let Ai be an AF algebra with the
image as dimension group (7.5). �
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The next result was observed by Skandalis [Skandalis 1988]; it is implicitly con-
tained in [Rosenberg and Schochet 1987]. The proof is quite similar to that of
23.10.1.

Theorem 23.10.5. Let B be a C∗-algebra. The following conditions are equiv-
alent :

(i) B ∈ N ′.
(ii) B is KK-equivalent to a C∗-algebra in N .
(iii) B is KK-equivalent to a commutative C∗-algebra.
(iv) If D is any C∗-algebra with K∗(D) = 0, then KK∗(B,D) = 0.

Proof. (i) =⇒ (iv) is trivial, (iii) =⇒ (ii) is 22.3.5(d), and (ii) =⇒ (i) is
the UCT. To prove (iv) =⇒ (iii), let A be a commutative C∗-algebra and x ∈
KK(A,B) with γ(x) : K∗(A)→ K∗(B) an isomorphism (23.10.3). Represent x

by a semisplit extension

0 −→ SB ⊗K −→ D −→ A −→ 0.

By the K-theory exact sequence, K∗(D) = 0, so KK∗(B,D) = 0. Apply the
KK-theory exact sequence in the second variable to conclude that right multi-
plication by x is an isomorphism from KK(B,A) to KK(B,B). If y is a left
inverse for x, by the same argument applied to A instead of B, and using the
implication (iii) =⇒ (iv), we conclude y is left invertible, so x is invertible. �

This result has an interesting and important consequence. We first need a defi-
nition:

Definition 23.10.6. If A and B are separable C∗-algebras, then A KK-
dominates B if there are x ∈ KK(A,B), y ∈ KK(B,A) such that yx = 1B in
KK(B,B).

Examples 23.10.7. (a) If A homotopy-dominates B (or shape-dominates B)
then A KK-dominates B.

(b) A⊕B KK-dominates both A and B.

(c) If 0 → J → A → B → 0 is a split exact sequence of separable C∗-algebras,
then A KK-dominates both J and B.

Corollary 23.10.8. If A ∈ N ′, and A KK-dominates B, then B ∈ N ′.

Proof. Let D be a (separable) C∗-algebra with K∗(D) = 0, and let z ∈
KK(B,D). Then, if x, y are as in 23.10.6, we have xz = 0 in KK(A,D) = 0.
Thus yxz = z = 0, i.e. KK(B,D) = 0. �

A simple consequence, which can be easily proved directly, is that A1⊕A2 ∈ N ′
if and only if A1, A2 ∈ N ′. A more interesting application is the proof in [Tu
1998] that the C∗-algebra of an amenable groupoid is always in N .
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23.11. Splitting

We can now use the results of 23.10 to conclude that the exact sequences in
the three theorems split (unnaturally). 23.10.3 allows us to reduce the splitting
problem to the case where A and B are commutative, A = A0⊕A1, B = B0⊕B1,
Ki(Aj) = Ki(Bj) = 0 for i 6= j. Then

KK(A,B) ∼= KK(A0, B0)⊕KK(A0, B1)⊕KK(A1, B0)⊕KK(A1, B1),

K∗(A⊗B) ∼= K∗(A0 ⊗B0)⊕K∗(A0 ⊗B1)⊕K∗(A1 ⊗B0)⊕K∗(A1 ⊗B1).

Apply the theorems to each term separately, and note that in each case one of
the maps is an isomorphism because the other end term vanishes. This proves
that all the sequences split.

It is known [Rosenberg and Schochet 1987] that the exact sequences in these
theorems cannot have natural splittings even in the commutative case (an “ex-
planation” is given in 23.15.11).

Proposition 23.11.1. Let A ∈ N . Then the UCT sequence for KK∗(A,A) is
a split exact sequence of graded rings. So KK∗(A,A) is isomorphic to⊕

ExtnZ(Ki(A),Kj(A)), where i, j, n = 0, 1,

with the following ring structure: the product of any two Ext1
Z-terms is 0, and

Ext0
Z = Hom acts on Hom and Ext1

Z as usual . So the Ext1
Z-terms in KK∗(A,A)

form an ideal with square 0.

Proof. As above, we may assume that A = A0 ⊕ A1. KK∗(A0, A0) and
KK∗(A1, A1) are graded subrings of KK∗(A,A), and if x ∈ KK∗(A,Ai) ⊆
KK∗(A,A), y ∈ KK∗(Aj , A) ⊆ KK∗(A,A) for i 6= j, then x ⊗A y = 0. It is
routine to check all the various cases of products from the different summands
to verify that the ring structure is as described. �

23.12. The General KT

The proofs of all the theorems except the KT are now complete. We have,
however, only proved that the KT holds if K∗(B) is finitely generated. To
show that it also holds if K∗(A) is finitely generated, we first reduce to the
case where A and B are commutative, say A = C0(X), B = C0(Y ). Then
KK∗(A,B) ∼= K̃∗−1(F (X+) ∧ Y +) (16.4.4). One must then replace F (X+) by
a finite complex and use the Künneth Theorem of algebraic topology.

23.13. Extensions of the Theorems

23.10.5 shows that the UCT holds for all B if and only if A is KK-equivalent
to a commutative C∗-algebra. The class N ′ of A for which the UCT holds for
every B does not consist of all separable C∗-algebras: if A ∈ N ′, then there
are six-term exact sequences in KK(A, · ) for arbitrary extensions. Thus C∗r (Γ),
where Γ is as in 19.9.8, is not in N ′.
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Let N ′′ be the set of all A for which the KT holds for all B. 23.10.5(iv)
shows that N ′′ ⊆ N ′, and N ′′ at least contains all algebras in N ′ with finitely
generated K-theory. Some type of finite generation hypothesis is necessary in
the KT (23.15.4). It should be possible (and interesting) to characterize the
algebras in N ′′ in terms of their K-groups. In this connection, the following
result is relevant:

Proposition 23.13.1. [Rosenberg and Schochet 1987, 7.14] Let Ai ∈ N ′′, and
A = lim−→Ai. Then A ∈ N ′′ if and only if the Milnor lim1-sequence holds:

0 −→ lim1

←− K∗(Ai) −→ K∗(A) −→ lim←−K
∗(Ai) −→ 0

To characterize N ′′, one would need to write a general A ∈ N in some canonical
way as an inductive limit of algebras in N with finitely generated K-theory.

23.13.2. It is less clear which A satisfy the KTP for all B. An argument that
the KTP should not hold in general is that (minimal) tensor product with a
fixed C∗-algebra is not always an exact functor. The class of exact C∗-algebras
is strictly larger than the class of nuclear C∗-algebras; it is the same as the class
of subnuclear C∗-algebras. See [Archbold 1982], [Lance 1982], or [Wassermann
1994] for a discussion of exact C∗-algebras.

The KTP appears to have a better chance of holding in general if maximal
instead of minimal tensor products are considered, since ⊗max is always exact. If
A1 and A2 are KK-equivalent, then A1⊗maxB and A2⊗maxB are KK-equivalent
[Skandalis 1988]. So the class of A for which the ⊗max-KTP holds for all B is
closed under KK-equivalence.

If Γ is as in 19.9.8, then the quotient map from C∗r (Γ)⊗maxC
∗
r (Γ) to C∗r (Γ)⊗

C∗r (Γ) does not induce an isomorphism on K-theory (there is a nontrivial kernel),
so either the KTP or the ⊗max-KTP (probably the KTP or possibly both) fails
for A = B = C∗r (Γ).

23.13.3. There is also some “fine structure” in the KK-groups related to the
UCT. See [Elliott and Gong 1994; Gong 1994] for the action of the product
in relation to the UCT. There is also a natural topology on KK(A,B); the
subgroup Pext(A,B) of Ext1

Z(A,B) consisting of pure extensions is the closure
of 0 in this topology. Pext has played a natural role in classification problems
[Rørdam 1993]. There is a “universal multicoefficient theorem” [Dădărlat and
Loring 1996b] involving Pext and mod p K-theory. See [Schochet 1996] for more
on the fine structure of the KK-groups.

23.14. Equivariant Theorems

There are equivariant versions of the UCT and KT, but even the correct state-
ments are much more complicated to formulate. See [Rosenberg and Schochet
1986]. See [Madsen and Rosenberg 1988] for more equivariant UCT’s and a UCT
for real C∗-algebras.
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23.15. EXERCISES AND PROBLEMS

23.15.1. If A ∈ N , a special case of the UCT (with B = C) gives a short exact
sequence

0 −→ Ext1
Z(K0(A),Z) −→ Ext(A) −→ Hom(K1(A),Z) −→ 0

which is natural in A and splits unnaturally. This is Brown’s original Universal
Coefficient Theorem [Brown 1984] (16.3.3). Show that this sequence must split
(unnaturally) for purely algebraic reasons [Kahn et al. 1977].

23.15.2. If A and B are AF algebras, then the UCT says that KK(A,B) ∼=
Hom(K0(A),K0(B)). In particular, A and B are KK-equivalent if and only if
their dimension groups are isomorphic as groups (ignoring the order structure
completely). Find a direct proof of this fact.

23.15.3. If A and B are AF algebras, then the UCT says that Ext(A,B) ∼=
Ext1

Z(K0(A),K0(B)) (cf. 16.4.7). The correspondence is given by the map κ of
23.1. This result (at least for A and B simple) is originally due to Handelman
[Handelman 1982], with the equivalence relation clarified by Brown and Elliott
[Brown and Elliott 1982]. The case B = C comes from Brown’s UCT (23.15.1).
Recall that any extension of AF algebras is again AF.

23.15.4. Let R be the UHF algebra with dimension group Q (7.5). From the
UCT we have that KK(R,R) = Q and K∗(R) = 0. Thus the Künneth theorem
fails for A = B = R, showing that the finite generation hypothesis in the KT is
necessary. This example is due to G. Elliott.

The difficulty stems from the fact that KK is not σ-additive in the second
variable (19.7).

23.15.5. Show that if A ∈ N and K∗(A) is finitely generated, then KK(A, · ) is
σ-additive (19.7.2) [Rosenberg and Schochet 1987, 7.13].

23.15.6. K-Theory with Rational Coefficients. (a) Let D ∈ N with
K0(D) = Q, K1(D) = 0 (e.g. D = R of 23.15.4). Define K∗(B; Q) = K∗(B⊗D),
and more generally KK(A,B; Q) = KK(A⊗D,B⊗D) ∼= KK(A,B⊗D). Then
KK( · , · ; Q) is independent of D and is a bifunctor from pairs of C∗-algebras to
rational vector spaces, with the same basic properties as the ordinary KK-groups
(homotopy invariance, stability, Bott periodicity, long exact sequences for semis-
plit extensions, etc.); the UCT and KTP hold with appropriate (simplifying)
modifications.

(b) It is not true in general that KK(A,B; Q) ∼= KK(A,B)⊗Z Q: for example,
KK(D,C; Q) = Q, but KK(D,C) = 0. It is true that K∗(B; Q) ∼= K∗(B)⊗Z Q
for any B.

(c) Show that the functor K0( · ; Q) is characterized on the class N by homotopy
invariance, stability, continuity, split exactness, and the “rationalized” dimension
axiom (F (C) = Q, F (C0(R)) = 0 ).
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23.15.7. K-Theory mod p. (a) As in 23.15.6, let D be a C∗-algebra in N with
K0(D) = Zp, K1(D) = 0. For example, let D be the Cuntz algebra Op+1 (or a
suitable commutative C∗-algebra). Define K∗(B; Zp) = K∗(B ⊗D). K∗(B; Zp)
is a Zp-module.

(b) Show that these modules are independent of the choice of D. It is not in
general true that K∗(B; Zp) ∼= K∗(B) ⊗Z Zp : K1(D; Zp) is nontrivial since
Ext1

Z(Zp,Zp) is nontrivial.

(c) There is for any B an exact sequence

K0(B)
p- K0(B) - K0(B; Zp)

K1(B; Zp)

6

� K1(B) �
p

K1(B)
?

where p denotes multiplication by p, which may be used to calculate K∗(B; Zp)
[Cuntz 1981c; Schochet 1984b].

(d) Show from the UCT that K0(D) = 0, K1(D) = Zp (cf. 16.4.5).

(e) Define KK(A,B; Zp) = KK(A,B ⊗D). Show from (d) that KK(A,B; Zp)
is isomorphic to KK1(A ⊗D,B). Determine which properties of ordinary KK

carry over to the mod p case.
Rosenberg and Schochet [Rosenberg and Schochet 1987] have obtained some

very interesting results about mod p K-theory. Cuntz and Schochet [Schochet
1984b] had done earlier work on the subject. The topological mod p theory was
developed earlier [Araki and Toda 1965, 1966].

More recently, mod p K-theory has been used in the classification of non-
simple approximately homogeneous C∗-algebras of real rank zero [Dădărlat and
Loring 1996a]. The invariant is K(A) = K∗(A)⊕

⊕
pK∗(A; Zp) with a natural

order structure and Bockstein operations. There is a universal multicoefficient
theorem relating KK, Pext, and homomorphisms of this invariant [Dădărlat and
Loring 1996b].

23.15.8. Let KKN be the full subcategory of KK with objects in N . Show
that KKN is an abelian category by using a mapping cone construction to yield
kernels and cokernels. Find the projective and injective objects in this category.

23.15.9. (a) Let A and B be graded C∗-algebras. Define a map σ : E(A,B)→
E(A,B) by σ(E, φ, F ) = (E, φ,−F ). σ drops to an involution of KK(A,B), also
denoted σ, and hence to an involution of KK∗(A,B). If A and B are evenly
graded, then σ = 1, whereas if one is evenly graded and the other has an odd
grading, then σ = −1. We have σ(x ⊗̂D y) = σ(x) ⊗̂D σ(y).

(b) Regard KK∗(A,B) as a graded abelian group using the involution σ, i.e.
KK∗(A,B)(0) = {x : σ(x) = x}, KK∗(A,B)(1) = {x : σ(x) = −x}. If A
and B are trivially graded (or evenly graded), then KK∗(A,B)(0) = KK(A,B),
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KK∗(A,B)(1) = KK1(A,B), so this grading on KK∗ extends the grading con-
sidered in Section 23.

(c) Formulate and prove graded versions of the UCT, KT, and KTP. K∗(A) and
K∗(A) are replaced by KK∗(C, A) and KK∗(A,C), with grading defined as in
(b); Hom , Ext, Tor are interpreted as respecting the grading in the appropriate
sense.

23.15.10. Is every graded C∗-algebra KK-equivalent to a trivially graded C∗-
algebra? 23.10.3 suggests it is possible that a general graded C∗-algebra is KK-
equivalent to a C∗-algebra A⊕B, where A has a standard even grading and B

a standard odd grading. Such a C∗-algebra is KK-equivalent to A⊕ (SB ⊗̂C1)
with standard even grading; this is in turn KK-equivalent to a trivially graded
C∗-algebra.

23.15.11. (a) Let A and B be (separable) C∗-algebras, with A ∈ N . By identi-
fying KK(A,B) with Ext(A,SB), show that to each x ∈ KK(A,B) there is a
six-term cyclic exact sequence

E1
� K1(B) �

φ1
K1(A)

K0(A)
? φ0 - K0(B) - E0

6

which is well defined up to the usual notion of equivalence.

(b) Such an exact sequence is completely determined by the elements of

Ext1
Z(kerφ0, cokerφ1) and Ext1

Z(kerφ1, cokerφ0)

at E1 and E0 respectively.

(c) Suppose A ∈ N . Use the fact that the natural map

Ext1
Z(Ki(A),K1−i(B))→ Ext1

Z(kerφi, cokerφ1−i)

is surjective (because Ext2
Z = 0) to show that every such exact sequence comes

from a KK-element.

(d) The natural maps in (c) are not injective in general, so differentKK-elements
can yield the same six-term exact sequences. For example, if A = B = O3 ⊗O3,
then |KK(A,B)| = 16, but there are only 7 such exact sequences.

The fact that there is no natural way of associating a KK-element to a six-
term exact sequence is closely related to the fact that the UCT exact sequence
has no natural splitting.

23.15.12. One of the outstanding open questions of C∗-algebra theory is whether
the bootstrap class N of 22.3.4, which by the results of this section consists pre-
cisely of the separable nuclear C∗-algebras A for which the UCT holds for all B,
contains all nuclear C∗-algebras. By 22.3.5(g), if A ∈ N and α ∈ Aut(A), then
A×α Z ∈ N .
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(a) Let B be the stable AF algebra with dimension group Z + Zγ, where γ is
the golden ratio 1

2 (1 +
√

5 ). Then B is simple and KK-equivalent to C ⊕ C,
and there is an automorphism β of B with β∗ multiplication by γ. B ×β Z is
purely infinite, and its K-theory is trivial by the Pimsner–Voiculescu sequence,
so B ×β Z ∼= O2 ⊗K by [Kirchberg 1998].

(b) Let A be a separable nuclear C∗-algebra. Let δ be the automorphism 1⊗ β
of D = A⊗B. Then D ×δ Z ∼= A⊗O2 ∈ N because it is K-contractible. Also,
D is KK-equivalent to A⊕A.

(c) Suppose A ×α Z ∈ N =⇒ A ∈ N . (By Takai duality, this is equivalent to
saying that N is closed under crossed products by T.) Then, if A is as in (b),
we can conclude that A⊕A ∈ N and thus A ∈ N by 23.13.8.

(d) A similar argument might show that if N is closed under crossed products
by finite cyclic groups (even by Z2), then N contains all separable nuclear C∗-
algebras.

24. Survey of Applications to Geometry and Topology

In this section, we give a brief survey of the principal applications of KK-
theory so far in geometry and topology. This section is intended only as an
introduction to an already formidable array of deep mathematics, and it is hoped
that readers will further pursue some of these topics by referring to the original
works. Other detailed surveys of this material can be found in [Higson 1990;
Connes 1994].

24.1. Index Theorems

The Atiyah–Singer Index Theorem, which asserts that the Fredholm index of
an elliptic pseudodifferential operator can be calculated from purely topological
data associated with the operator and the underlying spaces, is regarded as one of
the great achievements of modern mathematics. In this paragraph we will give a
brief description of the index theorem, how noncommutative topology is relevant,
and some of the ways the theorem can be generalized using noncommutative
topology. The interested reader can learn much more about index theorems in
[Atiyah and Singer 1968a; 1968b; 1971a; 1971b; Atiyah and Segal 1968; Baum
and Douglas 1982a; Fack 1983; Kasparov 1984a; Moore and Schochet 1988].

We will not attempt to even summarize the theory of pseudodifferential op-
erators here; [Trèves 1980] is one good reference for the general theory.

If E is a smooth vector bundle over a smooth (C∞) manifold M , we will write
Γ∞(E) [resp. Γ∞c (E), Γ∞0 (E)] to denote the smooth sections [resp. with compact
support, vanishing at ∞] of E. If D is a pseudodifferential operator from E(0)

to E(1), where the E(i) are smooth vector bundles over M (i.e. D : Γ∞(E(0))→
Γ∞(E(1))), then D defines a symbol σD : π∗E(0) → π∗E(1), where π∗E(i) is the
pullback of E(i) to a vector bundle over the cotangent bundle T ∗M of M via
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the projection map π. D is elliptic if σD(ξ) is an isomorphism for every nonzero
cotangent vector ξ.

If D is elliptic and M is compact, then the kernel and cokernel of D are finite-
dimensional subspaces of Γ∞(E(0)) and Γ∞(E(1)) respectively, and the analytic
index of D is defined to be

Inda(D) = dim kerD − dim cokerD

If M is oriented, the topological index of D is defined as

Indt(D) = 〈τ!(ch(σD)) ∪ Td(T ∗M ⊗R C), [M ]〉

where ch(σD) is the Chern character of σD ∈ H∗c (T ∗M),Q), Td(T ∗M ⊗R C) ∈
H∗(M ; Q) is the Todd class of the complexified cotangent bundle, ∪ is the cup
product in cohomology, τ! : H∗c (T ∗M) → H∗c (M) is the inverse of the Thom
isomorphism, [M ] ∈ H∗(M) is the fundamental class, and 〈 · , · 〉 is the standard
pairing of cohomology and homology.

Theorem 24.1.1 (Atiyah–Singer Index Theorem). If M is compact and
oriented , and D is an elliptic pseudodifferential operator as above, then

Inda(D) = Indt(D).

Two special cases illustrate the typical content of the Index Theorem in the odd-
and even-dimensional cases respectively:

Examples 24.1.2. (a) Let M = S1, E(0) = E(1) = one-dimensional triv-
ial bundle, so Γ∞(E(i)) ∼= C∞(S1). Let f ∈ C∞(S1), f never 0. Write
C∞(S1) = C∞(S1)+ ⊕ C∞(S1)−, where C∞(S1)+ is the Hardy space; let Tf
be the compression of the multiplication operator Mf to C∞(S1)+, and set
Df = Tf ⊕ 1. The Index Theorem then says that Inda(Df ) = −(winding num-
ber of f).

(b) Let M be a compact Riemann surface of genus g, and L a holomorphic line
bundle. Let ∂̄ : Γ∞(L) → Γ∞(L ⊗ T̄ ∗) be the standard ∂̄-operator (∂̄ really
gives the Cauchy–Riemann equations; the solutions of ∂̄ are the holomorphic
sections.) The Index Theorem in this case gives the Riemann–Roch Theorem:
Inda(∂̄) = d− g + 1, where d is the degree of L, defined via intersection theory.

There are many possible directions in which the Index Theorem has potential
generalizations. In all cases, the first difficulty is to make sense of the analytic
index, since the operators considered are not Fredholm operators in the usual
sense. Sometimes, as in the L2 index theorems, a numerical index can be defined
using dimension theory in von Neumann algebras instead of ordinary dimension
theory; but usually the analytic index is instead interpreted as an element of a
certain K-group. The topological index is most cleanly expressed in terms of the
intersection product. A general index theorem is then a result that a K-group
element defined analytically from a pseudodifferential operator is the same as
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another K-group element defined in purely topological terms from the symbol
of the operator and the topology of the underlying spaces.

The original Index Theorem can be rephrased in this manner: the topological
index may be regarded as defining a homomorphism from K0(T ∗M) to Z (actu-
ally to Q), which can be alternately described without any explicit mention of
cohomology (see [Atiyah and Singer 1968a]). The symbol of an elliptic operator
defines an element of K0(T ∗M). The analytic index is the composite of the
homomorphism K0(T ∗M) → K0(M) (given by a certain intersection product)
which sends the class of a symbol to the class of the associated elliptic operator,
with p∗ : K0(M)→ Z induced by p : M → {pt}.

24.1.3. The first generalization we consider is the index theorem for families,
also due to Atiyah and Singer. Suppose Y is a locally compact space (called the
parameter space), Dy(y ∈ Y ) a continuous family of elliptic pseudodifferential
operators on (vector bundles over) a compact smooth manifold M , which are
invertible except for a compact set of y. This time the index (both analytic and
topological) takes values inK0(Y ). The analytic index is easy to (approximately)
describe: y → kerDy and y → cokerDy (essentially) define vector bundles
over Y which have compact support; the analytic index is the difference of the
equivalence classes of these vector bundles. (Actually the definition is a little
more complicated since these “vector bundles” need not be locally trivial.) The
topological index is given by a formula similar to the one in the original index
theorem.

24.1.4. The next index theorem we consider, which is a generalization of the
previous ones, is the result of Mǐsčenko and Fomenko [1979]. If B is a unital
C∗-algebra, then a B-vector bundle over a space X is a locally trivial bundle
of Banach spaces over X whose fibers have the structure of finitely generated
projective B-modules. We write K0(X;B) for the Grothendieck group of the
semigroup of stable isomorphism classes of B-vector bundles over X (if X is not
compact, we take the kernel of the map K0(X+, B)→ K0(+, B) as in ordinary
K-theory.) We have K0(X;B) ∼= K0(C0(X)⊗B).

A theory of elliptic pseudodifferential B-operators between smooth B-vector
bundles over a smooth compact manifold M can be developed in complete anal-
ogy with the ordinary theory; such an operator D has an analytic B-index: after
perturbing D by a suitable “B-compact” operator, the kernel and cokernel of
D are finitely generated projective B-modules, so we can let IndaB(D) be the
difference of these modules in K0(B).

There is a topological formula for the index in this case which is formally
identical with the formula in the original index theorem. The Chern character,
however, must be suitably interpreted: from the Künneth Theorem for tensor
products in K-theory (23.1.3) we have

K0(X;B)⊗Q ∼= (K0(X)⊗K0(B)⊗Q)⊕ (K1(X)⊗K1(B)⊗Q)
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and composing this isomorphism with the ordinary Chern character we get a
map

ch : K0(X;B)⊗Q → (Heven(X; Q)⊗K0(B))⊕ (Hodd(X; Q)⊗K1(B))

which is a rational isomorphism. This is the Chern character used in the
Mǐsčenko–Fomenko index formula.

The Atiyah–Singer Index Theorem is the case B = C, and the Index Theorem
for Families is the case B = C0(Y ).

24.1.5. Another generalization comes from considering a G-equivariant elliptic
operator on a proper G-space M , where G is a locally compact group. If G is
compact, then the original index theorem applies to give an equality between two
numbers; but a finer index theorem is possible in this situation. As first noted
by Bott and then developed by Atiyah and Singer, one should use G-equivariant
K-theory (section 11); then everything can be developed in the identical manner
to the original situation, except that the indexes take values in the representation
ring R(G) = KG

0 (C) = K0
G(+) instead of Z = K0(C) = K0(+).

Whether or not G is compact, if M/G and all the stability subgroups are com-
pact one obtains an analytic and topological index taking values in K0(C∗r (G));
Kasparov [1984b] proved that these two indexes coincide.

An important special case is when M = G/H, where G is a connected Lie
group and H is a compact subgroup. One can identify a G-invariant elliptic
operator on G/H with a G-invariant operator on G, so one can obtain an index
in K0(C∗r (G)) for such an operator. If G is unimodular, the Plancherel dimension
of the kernel and cokernel (defined, if you like, using the canonical trace on
λ(G)′′) are finite, and the difference gives a real-valued analytic index for the
operator. This index may be calculated by a topological formula as in the original
index theorem. Several important results on the existence or non-existence of
L2-solutions to elliptic partial differential equations have been proved using this
theorem, which is due to Connes and Moscovici [1982a; 1982b].

One can also consider the equivariant version of the Mǐsčenko–Fomenko index
theorem: ifM is a properG-space and B is aG-algebra, one can obtain indexes in
KG

0 (B) or in K0(C∗r (G,B)) for a G-invariant elliptic operator between B-vector
bundles over M .

24.1.6. The final example we discuss is a generalization of Kasparov’s index
theorem of 24.1.5: the longitudinal index theorem for foliations of Connes and
Skandalis [1984]. If V is a smooth manifold with foliation F , then there is an
index theorem for pseudodifferential operators which are elliptic in the longi-
tudinal direction. In this case the indexes take values in K0(C∗(V/F )), where
C∗(V/F ) is the C∗-algebra of the foliation, i.e. the groupoid C∗-algebra of the
holonomy groupoid of V/F [Connes 1982]. See [Moore and Schochet 1988] for
a detailed treatment of this result. There is a version of this theorem for real
C∗-algebras [Schröder 1993].
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There are other index theorems; for example, Teleman’s index theorem [Tele-
man 1984], which can be used to prove the homotopy invariance of the rational
Pontrjagin classes. See [Hilsum 1985] for a proof using KK-theory. Baum, Dou-
glas, and Taylor [Baum et al. 1989; Baum and Douglas 1991] have developed a
relative KK-theory with the goal of studying index theorems on manifolds with
boundary.

24.1.7. The general principle in all these index theorems is that if (Dy) is a
family of elliptic operators parametrized by a space Y , then the index should be
an element of K0(Y ). In several of the settings, Y is a “singular space” (e.g.
the dual space of a group or the leaf space of a foliation) for which there is a
noncommutative C∗-algebra B which plays the role of C0(Y ) in a natural way.
The general principle is then that the index should take values in K0(B).

24.1.8. To place the index theorems more in the language of the main body of
work in these notes, we consider the following construction. Let M be a compact
manifold and PM the algebra of pseudodifferential operators of degree 0 on M .
Then the symbol map defines a homomorphism φM : PM → C(S∗M), where
S∗M is the cosphere bundle on M (defined using a Riemannian metric on M .)
We thus get an extension

0→ K(L2(M))→i P̄M
φM−→ C(S∗M)→ 0

(P̄M is the closure of PM .) If D is elliptic, then σD is invertible in C(S∗M);
the analytic index is the image of its class in K1(C(S∗M)) under the connecting
map K1(C(S∗M))→ K0(K) ∼= Z in the corresponding K-theory exact sequence.
The Atiyah–Singer Index Theorem essentially gives a topological formula for this
image element.

In the other index theorems, a similar extension can be obtained, with the
terms K(L2(M)) and C(S∗M) replaced by other suitable C∗-algebras. For ex-
ample, in the longitudinal index theorem for foliations, K(L2(M)) is replaced
by C∗(V/F ). In each case the analytic index can be interpreted nicely as the
image of the symbol element under the K-theory connecting map of the exact
sequence.

Although these index theorems are extremely powerful and useful as they
stand, they are a bit crude in the sense that they really describe the extension
of C∗-algebras defined by taking the closure of the set of operators of interest.
By taking closures, the smooth structure of the operators is lost and only the
underlying topology remains. If the differential structure is retained, a more
delicate analysis is possible: for example, in the original setting, we actually
have an extension

0 −→ Kp(L2(M)) −→ PM −→ C∞(S∗M) −→ 0

where Kp is the Schatten p-class, for suitably large p. The analysis in this
case requires the study of ”p-summable Fredholm modules” and is one of the
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motivations for the development of cyclic cohomology theory [Connes 1994].
Such analysis can properly be called noncommutative differential geometry.

24.2. Homotopy Invariance of Higher Signatures

A rather surprising application of noncommutative topology is to the (so far
partial) solution to the Novikov Conjecture on the homotopy invariance of higher
signatures on manifolds.

Let M be an oriented connected compact smooth n-manifold. Then M has a
fundamental class [M ] ∈ Hn(M). A number obtained by evaluating a character-
istic class in H∗(M ; Q) on [M ] is called a characteristic number. The question
then arises which characteristic numbers are (oriented) homotopy invariant.

One particularly important characteristic class is the L-class L(M). We de-
note the characteristic number 〈L(M), [M ]〉 by Sign(M), the signature of M .
If n = 4k, the Hirzebruch signature theorem says that Sign(M) is equal to the
signature (in the ordinary linear algebra sense) of the symmetric nondegener-
ate bilinear form on H2k(M ; Q) induced by the cup product. This signature is
obviously homotopy invariant.

If M is simply connected, then Novikov proved that the signature is the
only homotopy-invariant characteristic number. However, if M is not simply
connected, there are generally others also.

Let Π be the fundamental group of M , and let M̃ be the universal cover of
M . Then there is a continuous map f (well defined up to homotopy), called
the classifying map of the covering M̃ → M , f : M → BΠ, where BΠ is the
classifying space of Π (also well defined up to homotopy equivalence). f induces
an isomorphism of fundamental groups. f induces a map f∗ from H∗(BΠ) to
H∗(M). If x ∈ H∗(BΠ; Q), then the cup product L(M)∪f∗(x) is a characteristic
class of M ; the corresponding characteristic number is called a higher signature.
It can be shown using bordism theory that any homotopy-invariant characteristic
number is a higher signature; the question then becomes whether all higher
signatures are homotopy invariant.

Conjecture 24.2.1 (Novikov Conjecture). All higher signatures are in-
variant under (oriented) homotopy equivalence. Alternately , f∗(L(M) ∩ [M ]) is
an (oriented) homotopy invariant of M in H∗(Π; Q).

The original Novikov conjecture only applied to elements of H∗(BΠ) which are
products of one-dimensional classes; but all evidence is that the more general
conjecture holds.

If Π has torsion, the conjecture would definitely be false if we did not tensor
with Q.

The homotopy invariance of the signature has had important consequences in
topology; for example, the existence of exotic spheres and partial classification
of homotopy RP4k−1’s. The Novikov conjecture (to the extent to which it is
true) gives important information about obstructions for maps being homotopy
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equivalences and homotopy equivalences being homotopic to homeomorphisms
(if the fundamental group is “large”, there aren’t many obstructions.) For ex-
ample, there is a conjecture of Borel, which is only slightly stronger than the
Novikov conjecture, that any two aspherical closed manifolds of the same dimen-
sion and the same fundamental group are homeomorphic (and furthermore that
any homotopy equivalence is homotopic to a homeomorphism.)

For future reference there is a technical strengthening of the Novikov conjec-
ture. Kasparov defined maps α : K∗(C∗(Π))→ RK∗(BΠ) and β : RK∗(BΠ)→
K∗(C∗(Π)) (RK∗ is representable K-theory), which are adjoints of each other.
The Strong Novikov Conjecture (SNC) is:

Conjecture 24.2.2 (Strong Novikov Conjecture). β is rationally injec-
tive (injective after tensoring with Q), or , equivalently , the image of α (after
tensoring with Q) is dense in the projective limit topology .

The fact that the SNC implies the Novikov Conjecture follows from a theo-
rem of Mǐsčenko and Kasparov that the generalized signature SignC∗(Π)(M) =
〈L(M) ∪ ch[V ], [M ]〉 ∈ K0(C∗(Π))⊗Q, where V = M̃ ×Π C

∗(Π) is the “univer-
sal flat C∗(Π)-vector bundle” over M , is a homotopy invariant (this is proved
using surgery theory.) SignC∗(Π)(M) may be thought of as the “Π-equivariant
signature of M .” If the SNC holds, to prove the Novikov conjecture it suf-
fices to consider only those elements of H∗(BΠ; Q) which can be pulled back
to K∗(C∗(Π)); the higher signature corresponding to such an element y can be
calculated as 〈SignC∗(Π)(M), y〉 using the pairing K∗(C∗(Π))×K∗(C∗(Π))→ Z
of K-theory and “K-homology” (actually a special case of the intersection prod-
uct.) The result is obviously homotopy invariant.

The Novikov Conjecture and the SNC may really be thought of as questions
about the group Π, since for a fixed Π the conjectures concern homotopy invari-
ance under maps between arbitrary closed manifolds with fundamental group Π.
We say “the conjecture holds for Π” if it holds for manifolds with fundamental
group Π.

The best results known so far are due to Mǐsčenko, Kasparov, Connes, Gro-
mov, Moscovici, Skandalis, Higson, and Rosenberg:

Theorem 24.2.3. Let Π be a finitely presented (discrete) group. Then the SNC
holds for Π if any of the following are satisfied :

(a) [Mǐsčenko 1974] There is a closed orientable K(Π, 1)-manifold admitting a
metric with non-positive sectional curvatures. (Kasparov [1995] has shown
that “closed” may be replaced by “complete”).

(b) [Kasparov 1995] Π can be embedded as a discrete subgroup of a connected
Lie group.

(c) [Kasparov and Skandalis 1994] Π is “bolic” (this contains (a) and (b) as
special cases, as well as hyperbolic groups [Connes 1994]).
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(d) [Higson and Kasparov 1997] Π admits an affine, isometric and metrically
proper action on a Euclidean space (in the language of Gromov , Π is a-T-
menable); in particular , all amenable groups satisfy the SNC .

(e) [Rosenberg 1983] The class of Π for which the SNC holds contains all count-
able solvable groups with torsion-free abelian composition factors, and is closed
under extensions by finite groups (in either order) and under free products.

The proofs of all parts are somewhat similar, using equivariant KK-theory in a
fundamental way.

There are versions of this theorem for real K-theory due to Rosenberg [1986b].
C. Ogle has announced a proof of the Novikov conjecture in full generality,

but his argument has not been checked at this writing.
[Ferry et al. 1995] and its references contain a much more detailed account

of the Novikov Conjecture and its history. There is also a Novikov Conjecture
Home Page (www.math.umd.edu/~jmr/NC.html).

24.3. Positive Scalar Curvature

A problem from differential topology which appears on the surface to have
even less to do with operator algebras than the Novikov Conjecture is the ques-
tion of characterizing which closed manifolds admit a Riemannian metric with
everywhere positive scalar curvature. To avoid verbosity, we will say by slight
abuse of language that such a manifold has positive scalar curvature.

If M is a closed 2-manifold, then the Gauss–Bonnet theorem says that M
can have positive scalar curvature only if its Euler characteristic is positive, i.e.
S2 and RP2 are the only possibilities (and both do, in fact, have positive scalar
curvature.) The situation becomes far more complicated even in dimension 3.

To simplify the discussion, from now on we will consider only smooth mani-
folds which are closed and have a spin structure (and are in particular oriented.)
Most results can be generalized to the case where M is only oriented and its uni-
versal cover M̃ has a spin structure. Such a spin manifold M has a canonically
defined Dirac operatorD on the spinor bundle; ifM is even-dimensional, then the
Dirac operator decomposes intoD+ andD− mapping the positive [resp. negative]
half-spinors to the negative [resp. positive] ones. These are Fredholm operators.
More generally, if Π = π1(M), and B is a unital C∗-algebra, we may define Dirac
operators D+

V and D−V for any flat B-vector bundle V over M (flat means pulled
back from BΠ); such a Dirac operator has an index IndB(D+

V ) ∈ K0(B)⊗Q.
There is one necessary condition for positive scalar curvature:

Theorem 24.3.1. [Rosenberg 1983, 1.1] Let M be even-dimensional , and let B
be any unital C∗-algebra. If M admits a metric with positive scalar curvature,
then IndB(D+

V ) = 0 for any flat B-vector bundle V . In particular , Ind(D+) = 0.

Outline of Proof. The key to the proof is to write D+
VD
−
V and D−VD

+
V as

∇∗∇+κ/4, where ∇∗∇ is a “Laplacian” and κ is the scalar curvature. Since the



256 IX. FURTHER TOPICS

scalar curvature is everywhere positive, D+
VD
−
V and D−VD

+
V are one-to-one with

dense ranges and bounded inverses. Hence IndB(D+
V ) = 0. �

IndB(D+
V ) can be rewritten using the Mǐsčenko–Fomenko index theorem as

〈Â(M) ∪ ch[V ], [M ]〉, where Â(M) ∈ H∗(M ; Q) is the total Â-class of M (a
certain polynomial in the rational Pontrjagin classes.) So the theorem may be
rephrased:

Corollary 24.3.2. Under the hypotheses of 24.3.1, we have

〈Â(M) ∪ ch[V ], [M ]〉 = 0.

As a special case, one obtains a theorem of Lichnerowicz: if M has positive scalar
curvature, then the Â-genus Â(M) = 〈Â(M), [M ]〉 is 0.

The analogy of this result with that of Mǐsčenko–Kasparov on the generalized
signature (24.2) suggests the following version of a conjecture of Gromov and
Lawson:

Conjecture 24.3.3. If M has positive scalar curvature, then for all x ∈
H∗(BΠ; Q), the higher Â-genus 〈Â(M) ∪ f∗(x), [M ]〉 is 0 (where f : M → BΠ
is the classifying map.) Equivalently , f∗(Â(M) ∩ [M ]) = 0.

Just as in the case of the Novikov Conjecture, 24.3.3 would follow from 24.3.2
and the fact that Kasparov’s map β is rationally injective. Thus the SNC implies
24.3.3. So we have the following corollary of 24.2.3 and 24.3.2:

Theorem 24.3.4. Let Π be a finitely presented group. Then all higher Â-genera
for M vanish, for any M with a spin structure, positive scalar curvature, and
fundamental group Π, if

(a) there exists an orientable K(Π, 1)-manifold admitting a complete metric with
non-positive sectional curvatures

or

(b) Π can be embedded as a discrete subgroup in a connected Lie group.

One important consequence is the following:

Corollary 24.3.5. Let Π be a group for which the SNC holds, and let N be
a closed spin manifold for which there is a map g : N → BΠ with g∗[N ] 6= 0 in
H∗(BΠ; Q). Then N does not have positive scalar curvature. In particular , no
K(Π, 1)-manifold has positive scalar curvature.

The finer version of the conjecture of Gromov and Lawson says that a spin man-
ifold M has positive scalar curvature if and only if the image of the spin bor-
dism class of M in the real K-theory group KOn(BΠ) (n = dim(M)) vanishes.
Conjecture 24.3.3 is roughly the Gromov–Lawson conjecture modulo torsion.
Gromov–Lawson, Rosenberg, and Miyazaki have obtained partial results on the
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G-L conjecture; Rosenberg has shown that the conjecture must be modified if Π
has torsion. Some of Rosenberg’s work requires use of real KK-theory.

The reader interested in a more detailed account of the positive scalar cur-
vature problem is urged to read the papers of Rosenberg [1983; 1986a; 1986b].
There is a recent survey article [Rosenberg and Stolz 1998].

24.4. The Baum–Connes Conjecture

Let G be a Lie group with countably many components (e.g. a connected
Lie group or a countable discrete group), and let M be a smooth manifold (not
necessarily connected) on which G acts smoothly. Then the analytic equivariant
K-theory of M can be defined as K∗(C∗(G,C0(M))) or K∗(C∗r (G,C0(M))).
It is desirable to construct a corresponding topological equivariant K-theory
K∗(G,M). For compact G this was done in Section 11.

An approach by Baum and Connes [1982] reduces the study of general ac-
tions to proper actions. The cocycles in the Baum–Connes theory are triples
(Z, σ, f), where Z is a smooth manifold with a proper G-action, f : Z → M a
G-equivariant smooth submersion, and σ is a G-equivariant symbol along the
fibers of f . There is a map µ : Ki(G,M) → Ki(C∗r (G,C0(M)), called the
(reduced) assembly map : on each fiber σ gives an elliptic operator Dx, and
µ(Z, σ, f) is the index of the family (Dx). In KK-terms, σ gives an element
of KK(C, C∗(G,C0(V )), where V is the subbundle of TZ of vectors tangent to
the fibers of f . The map φ : V → M is K-oriented, so there is an element
φ! ∈ KKG(C0(V ), C0(M)). µ(Z, σ, f) = [σ] ⊗̂C∗(G,C0(V )) jG(φ!).

Conjecture 24.4.1. µ : Ki(G,M) → Ki(C∗r (G,C0(M)) is always an isomor-
phism.

Most of the previous index theorems are special cases. For example, Atiyah–
Singer is (essentially) the case G = {e}, M = {pt}.
Ki(G,M) is usually easier to compute than Ki(C∗r (G,C0(M))); there is ma-

chinery from algebraic topology which can be applied.
Consider the case where G is discrete and M is a point. Let {γ1, γ2, . . .} be a

complete set of representatives for the conjugacy classes of elements of G of finite
order. For each γi, let Z(γi) be the centralizer in G. Then the Chern character
gives a map ch : K∗(G, · )→ ⊕iH∗(Z(γi); C).

Theorem 24.4.2. [Baum and Connes 1982]

ch : K∗(G, · )⊗Z C → ⊕iH∗(Z(γi); C)

is an isomorphism.

So in this case, the conjecture becomes:

Conjecture 24.4.3. µ : ⊕iH∗(Z(γi); C) → K∗(C∗r (G)) ⊗Z C is an isomor-
phism.
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The identity of G is one of the γi, and the centralizer in this case is all of
G. µ restricted to this summand is (essentially) Kasparov’s map β (24.2). So
injectivity of µ implies the Strong Novikov Conjecture (and is equivalent if G
is torsion-free.) Injectivity of µ is known if G can be embedded as a discrete
subgroup of a connected Lie group. In general, injectivity of µ is relevant to
problems in topology, and surjectivity is relevant to problems in C∗-algebras.

The Baum–Connes Conjecture implies the Generalized Kadison Conjecture
that C∗r (G) is projectionless whenever G is a torsion-free discrete group (cf.
10.8.2.) There are many other structure questions about C∗r (G) which would be
answered as a consequence of the conjecture.

The conjecture is known to be true in many cases, e.g. for a-T-menable
groups (24.2.3(d)) [Higson and Kasparov 1997]; see also [Julg and Kasparov
1995; Guentner et al. 1997]. The conjecture can be stated for groupoids, where
similar results hold [Tu 1998].

24.5. KK-Theoretic Proofs

There is one general line of argument using KK-theory which, with relatively
minor variations, can be used to prove most of the results described above. The
argument in this (approximate) form is due to Kasparov; the specific exposition
given here is based on lecture notes of J. Rosenberg.

Throughout this section, we let M be a closed smooth even-dimensional man-
ifold (if n = dimM is odd, M can be replaced by M × Tn.) Fix a Riemannian
metric and a smooth measure on M . The cotangent bundle T ∗M has a canon-
ical almost-complex structure. Let π : T ∗M → M be the bundle projection,
ω : M → + the collapse map (+ is a one-point space), and ∆ : M → M ×M
the diagonal map. We will also fix a separable unital C∗-algebra B, called the
auxiliary algebra.

As a special case of the topological Thom isomorphism (19.9.3) there are ele-
ments x ∈ KK(Γ(Cliff(T ∗M)), C0(T ∗M)) and y ∈ KK(C0(T ∗M),Γ(Cliff(T ∗M)))
which define a KK-equivalence. If M has a spinc-structure, x and y may be
regarded as elements of KK(C(M), C0(T ∗M)) and KK(C0(T ∗M), C(M)) re-
spectively.

We now introduce the Dirac operator and the ∂̄-operator. The ∂̄-operator is
defined as in 17.1.2(f), giving an element [∂̄] = [∂̄M ] ∈ KK(C0(T ∗M),C). If M
has a spinc-structure, then there is a true Dirac operator D on M which defines
a class in KK(C(M),C). In the general situation, we may still define a “Dirac
operator” as an elliptic pseudodifferential operator T with principal symbol
σD(x, ξ) = iρ(ξ/‖ξ‖), with ρ right Clifford multiplication on Cliff(T ∗M). Then
(L2(Cliffeven(T ∗M)) ⊕ L2(Cliffodd(T ∗M)), λ, T ) is a Kasparov (Γ(Cliff(T ∗M)),
C)-module whose class in KK(Γ(Cliff(T ∗M)),C) is denoted [D]. (D is actually
the unbounded operator associated to T as in 17.11.4. D is only determined up
to operator homotopy.)

Lemma 24.5.1. x ⊗̂C0(T∗M) [∂̄] = [D] and y ⊗̂Γ(Cliff(T∗M)) [D] = [∂̄].
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The proof is a straightforward calculation.
Thus it is sufficient to define either the ∂̄-operator or the Dirac operator; in

fact, both constructions are really the same thing from different points of view.
If P is an elliptic pseudodifferential operator between smooth B-vector bun-

dles over M , then P defines a class [P ] ∈ KK(C(M), B) by (L2(E(0))⊕L2(E(1)),
µ, P ), where µ is the action of C(M) by pointwise multiplication. We define
IndaB(P ) to be ω∗([P ]) ∈ KK(C, B) ∼= K0(B). IndaB(P ) is given by the same
module as [P ] but with the action of C(M) suppressed.

The symbol σP defines an element [[σP ]] ∈ KK(C(M), C0(T ∗M) ⊗ B) by
(Γ0(π∗E(0)) ⊕ Γ0(π∗E(1)), µ, σP ); we also have an element [σP ] = ω∗([[σP ]]) ∈
KK(C, C0(T ∗M)⊗B) obtained by forgetting the action of C(M).

We also have an element z ∈ KK(C(M) ⊗ C0(T ∗M), C0(T ∗M)) induced by
π × 1 : T ∗M →M × T ∗M .

Lemma 24.5.2. [[σP ]] = [σP ] ⊗̂C0(T∗M) z.

In the special case that P is the “Dirac operator” DE with coefficients in a B-
vector bundle E, defined in the usual way using a connection, we write [[E]] for
the element of KK(C(M), C(M) ⊗ B) defined by the module (Γ(E) ⊕ 0, µ, 0),
and [E] = ω∗([[E]]) the same module without C(M)-action. Then, just as in
Lemma 24.5.2, we have

Lemma 24.5.3. (a) [[E]] = [E] ⊗̂C(M) w, where w is the class of ∆ in the group
KK(C(M)⊗ C(M), C(M)).

(b) [DE ] = [[E]] ⊗̂C(M) [D] in KK(C(M), B).

Lemma 24.5.4. [DE ] = [[σDE ]] ⊗̂C0(T∗M) [∂̄].

Proof. We have [[σDE ]] ⊗̂C0(T∗M) y = [[E]], so the result reduces to 24.5.3. �

The following theorem can be regarded as the “Index Theorem”:

Theorem 24.5.5. If P is an elliptic pseudodifferential operator between smooth
B-vector bundles over M , then [P ] = [σP ] ⊗̂C0(T∗M) [∂̄].

Sketch of Proof. Reduce from a general pseudodifferential operator to Dirac
operators, using the fact that there is a Thom isomorphism between K∗(T ∗M)
and K∗(M), and thus the classes [σDE ] generate all of K0(C0(T ∗M)⊗B). Then
apply 24.5.4. �

To prove the Mǐsčenko–Fomenko index theorem, apply ω∗ to both sides and use
the fact that Td(T ∗M) is the image under Poincaré duality and Chern character
of [∂̄] (this could be taken as the definition).

For the case of an elliptic operator invariant under a group G, as in 24.1.5,
one replaces KK by KKG everywhere. The index is then an element of KG

0 (B).
One can push this index into K0(C∗r (G,B)) using jG of 20.6.2 and the canonical
element [c] ∈ K0(C0(M)×αG) defined using a cutoff function [Kasparov 1984a,
§ 4].
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To prove the Strong Novikov Conjecture in the case that Π is a discrete
subgroup of a connected Lie group G, first reduce by standard arguments to the
case where Π is torsion-free. In this case, we can let BΠ = Π\G/H, where H
is a maximal compact subgroup of G. Then M = G/H is a universal cover for
BΠ. If there is a complete orientable K(Π, 1)-manifold admitting a metric with
nonpositive sectional curvatures, we may take this manifold for BΠ; then let M
be a universal cover for BΠ. In either case the statement that β is rationally
injective can be rephrased using Poincaré duality as the statement that right
intersection product by jΠ([∂̄M ]) is rationally injective. This follows from 20.7.2,
which says that [∂̄M ] ∈ KKΠ(C, C0(M)) has a right inverse. So in these cases
β is actually injective. (If Π has torsion in the first case, then β may only be
rationally injective.)

Some of the natural approaches to the Baum–Connes conjecture involve cyclic
cohomology. But that is a subject for another book [Connes 1994].

25. E-Theory

While KK-theory is enormously useful, it has at least two defects: it is tech-
nically difficult and does not have exact sequences in general. Both features are
remedied by E-theory. E-theory was developed abstractly in categorical terms
by Higson as a universal enveloping category of SC∗ with the same abstract
properties as KK and for which the “excision” map e of 19.5.5 is an isomor-
phism for every exact sequence (it follows then that E(A, · ) has six-term exact
sequences for every separable A). Connes and Higson then found a concrete
realization of E-theory, which has the additional advantage that the technical
problems inherent in KK are greatly reduced, in addition to being a natural
realization which has immediate applicability.

In this section, we cover the basics of E-theory. There has so far been no
definitive treatment; the original article [Connes and Higson 1990] and the book
[Connes 1994] are sketchy on some details. The most detailed treatment so far
is [Samuel 1997], but its coverage of some of the technicalities is also inadequate.
[The reader comparing our exposition to [Connes 1994] should keep in mind that
our definition of the mapping cone of a homomorphism (19.4.1) differs in that
the algebra A is placed at 0 rather than 1. We have retained our definition
from earlier chapters since I believe it makes the arguments slightly simpler and
more natural.] Recently, a detailed exposition including equivariant E-theory
has become available [Guentner et al. 1997], using a different approach to some
technical parts of the theory including construction of the product (cf. 25.7.4).

We will not attempt to describe applications of E-theory, not because they are
insignificant—in fact, E-theory has made possible some of the most important
applications of operator K-theory—but because most of the applications are
nicely discussed in [Connes 1994]. Perhaps the best application so far, though,
is in Kirchberg’s remarkable classification theorem for purely infinite separable
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nuclear simple C∗-algebras [Kirchberg 1998] (in part proved independently by N.
C. Phillips). The tools of asymptotic morphisms and E-theory play an essential
role in the proof.

25.1. Asymptotic Morphisms

Definition 25.1.1. Let A and B be C∗-algebras. An asymptotic morphism
from A to B is a family 〈φt〉(t ∈ [1,∞)) of maps from A to B with the following
properties:

(i) t→ φt(a) is continuous for every a ∈ A
(ii) The set 〈φt〉 is asymptotically ∗-linear and multiplicative:

lim
t→∞

‖φt(a+ b)− (φt(a) + φt(b))‖ = 0

for all a, b ∈ A, etc.

Two asymptotic morphisms 〈φt〉 and 〈ψt〉 are (strictly) equivalent if

lim
t→∞

‖φt(a)− ψt(a)‖ = 0

for all a ∈ A.
A homotopy between asymptotic morphisms 〈φ(0)

t 〉 and 〈φ(1)
t 〉 from A to B is

an asymptotic morphism 〈φt〉 from A to C([0, 1], B) such that [φt(a)](s) = φ
(s)
t (a)

for s = 0, 1, all t, and all a.
Denote the set of homotopy classes of asymptotic morphisms from A to B by

[[A,B]].

Examples/Remarks 25.1.2. (a) A ∗-homomorphism φ from A to B defines
an asymptotic morphism by setting φt = φ for all t. We will, by slight abuse of
terminology, consider ordinary ∗-homomorphisms to be asymptotic morphisms
in this way. A homotopy of homomorphisms gives a homotopy of the corre-
sponding asymptotic morphisms, i.e. there is a natural map from the set [A,B]
of homotopy classes of ∗-homomorphisms from A to B, to [[A,B]]. This map is
far from surjective in general, and can also fail to be injective. More generally, a
(point-norm continuous) path 〈φt〉 of ∗-homomorphisms from A to B defines an
asymptotic morphism from A to B, which is homotopic to the homomorphism
φ1 (or to φt0 for any t0).

(b) The choice of the interval [1,∞) as the domain of t is arbitrary. We could
have just as easily taken [t0,∞) for any t0. We could also instead (or in addition)
require that φ1(a) = 0 for all a; then by replacing t by t−1 we may take the
index set to be (0, 1] with the requirement that φ1 = 0 and that φt becomes
asymptotically ∗-linear and multiplicative as t→ 0.

(c) A deformation from A to B is a continuous field 〈B(t)〉 of C∗-algebras over
[0, 1] such that B(0) ∼= A, B(t) ∼= B for 0 < t ≤ 1, and such that the field
restricted to (0, 1] is isomorphic to the constant field. [Some references such
as [Connes 1994] place the A at 1 rather than at 0; we have put it at 0 since
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it seems more natural and is consistent with our definition of mapping cones.]
Every deformation from A to B defines an asymptotic morphism from A to B
as in (b). However, not every asymptotic morphism from A to B comes from a
deformation, even a deformation of a quotient of A to B.

(d) If A and B are unital, then an asymptotic morphism 〈φt〉 from A to B is
unital if φt(1A) = 1B for all t. If A and B are arbitrary and 〈φt〉 is any asymp-
totic morphism from A to B, then φ extends canonically to a unital asymptotic
morphism 〈φ̃t〉 from A+ to B̃ by the formula φ̃t(x+λ1) = φt(x) +λ1. (It is easy
to verify that this gives an asymptotic morphism.)

(e) An asymptotic morphism φ from A to B applied coordinatewise gives an
asymptotic morphism φ(n) from Mn(A) to Mn(B), for any n. [This is a special
case of a tensor product, discussed in 25.2.]

(f) If φ is an asymptotic morphism from A to B, and p is a projection in A,
then for sufficiently large t, φt(p) is close to a projection q in B as in 4.5.1; the
class of q in Proj(B) is independent of the choices made, and depends only on
the class of p in Proj(A). Passing to matrix algebras as in (e), we get an induced
homomorphism φ∗ : V (A)→ V (B). With some additional preliminaries, we can
extend this to get maps φ∗ : Ki(A)→ Ki(B) for i = 0, 1 (25.1.6).

(g) Equivalent asymptotic morphisms are homotopic via the “straight line” in
between, i.e. φ(s)

t (a) = sφt(a) + (1− s)ψt(a) for 0 ≤ s ≤ 1.

(h) A reparametrization of an asymptotic morphism 〈φt〉 is an asymptotic mor-
phism 〈ψt〉, where ψt = φr(t) for some continuous function r : [1,∞) → [1,∞)
with limt→∞ r(t) =∞. (We usually only consider reparametrizations where r is
increasing, but this is not necessary.) An asymptotic morphism is homotopic to
any reparametrization via the reparametrizations rs(t) = st+ (1− s)r(t).

Proposition 25.1.3. If A and B are C∗-algebras and 〈φt〉 is an asymptotic
morphism from A to B, then for each a ∈ A the function t → φt(a) is norm-
bounded ; in fact , lim supt ‖φt(a)‖ ≤ ‖a‖.

Proof. By 25.1.2(d) we may assume A, B, and φ are unital. Since, for any
λ ∈ C, φt(λa) ≈ λφt(a) for t large, we may assume ‖a‖ = 1. Then 1−a∗a = x∗x

for some x ∈ A, so for any ε > 0 we have for all sufficiently large t an element
bt ∈ B with bt = b∗t and ‖bt‖ < ε, such that φt(a)∗φt(a) = 1B−φt(x)∗φt(x)+bt ≤
(1 + ε)1B . Thus lim supt ‖φt(a)‖ ≤ 1. �

25.1.4. (a) In light of 25.1.3, an asymptotic morphism from A to B defines a
∗-homomorphism from A to B∞ = Cb([1,∞), B)/C0([1,∞), B). Two asymptotic
morphisms define the same ∗-homomorphism if and only if they are equivalent.
Conversely, if φ : A→ B∞ is a ∗-homomorphism, any set-theoretic cross section
for φ is an asymptotic morphism from A to B, and any two such are equivalent.

(b) With this observation, we may view an asymptotic morphism as a general-
ized mapping cone. An asymptotic morphism φ, indexed by (0, 1] as in 25.1.2(b)



25. E-Theory 263

with φ1 = 0, may be thought of as an extension 0 → SB → E → A → 0. If φ
comes from an actual homomorphism ψ (i.e. limt→0 φt(a) = ψ(a) for all a), then
E is just the mapping cone of ψ and the exact sequence is the same as in 19.4.1.
[Conversely, if B is unital, then any extension of A by SB which is “concentrated
at 0” gives an asymptotic morphism from A to B via the Busby invariant, since
in this case M(SB) = Cb((0, 1), B) by 12.1.1(c).]

(c) Caution: If φ(0) and φ(1) are homotopic homomorphisms from A to B∞ via a
homotopy φ(s), i.e. φ(s) is given by a ∗-homomorphism from A into C([0, 1], B∞),
then the φ(s) define a homotopy between the corresponding asymptotic mor-
phisms (or more properly, between representatives of the corresponding equiv-
alence classes of asymptotic morphisms). But a homotopy between asymptotic
morphisms does not in general induce a homotopy between the corresponding
∗-homomorphisms into B∞: there is a natural inclusion of C([0, 1], B∞) into
C([0, 1], B)∞ induced by the obvious inclusion of C([0, 1], Cb([1,∞), B)) into
Cb([1,∞), C([0, 1], B)), but these inclusions are never surjective (even if B = C).
Said another way, if f is a continuous function from [1,∞) to C([0, 1], B), the
corresponding function f̃ : [1,∞) × [0, 1] → B is only uniformly continuous on
compact subsets of [1,∞)×[0, 1] in general, not on the whole set. Thus homotopy
of asymptotic morphisms is a more general notion.

25.1.5. 25.1.4 also allows us to replace a given asymptotic morphism with an
equivalent one with special properties in a number of ways:

(a) By elementary linear algebra, a ∗-homomorphism from A to B∞ always
has a ∗-linear (not necessarily bounded) lifting to Cb([1,∞), B). Thus every
asymptotic morphism from A to B is equivalent to an asymptotic morphism
〈φt〉, where each φt is ∗-linear (but not necessarily bounded).

(b) By the Bartle–Graves Selection Theorem [Bessaga and Pe lczyński 1975], a
∗-homomorphism from A to B∞ always has a continuous (not necessarily lin-
ear) lifting to Cb([1,∞), B). Thus every asymptotic morphism from A to B is
equivalent to an asymptotic morphism 〈φt〉, where each φt is continuous (but not
necessarily linear), in fact (t, a)→ φt(a) is a continuous function from [1,∞)×A
to B, and such that φt becomes asymptotically ∗-linear and multiplicative uni-
formly on compact sets as t→∞, i.e. for every ε > 0 and compact K ⊆ A there
is a t0 such that the following inequalities are satisfied for all t ≥ t0 and for all
x, y ∈ K and all λ ∈ C with |λ| ≤ 1:

‖φt(x) + λφt(y)− φt(x+ λy)‖ < ε,

‖φt(x)φt(y)− φt(xy)‖ < ε,

‖φt(x)∗ − φt(x∗)‖ < ε,

‖φt(x)‖ < ‖x‖+ ε.

It is a routine exercise to show that an asymptotic morphism coming from a
continuous map from A to Cb([1,∞), B)) satisfies these conditions.
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An asymptotic morphism satisfying all these conditions (i.e. coming from a
continuous map from A to Cb([1,∞), B)) will be called uniform.

Two equivalent uniform asymptotic morphisms 〈φt〉 and 〈ψt〉 are uniformly
equivalent in the sense that for any ε > 0 and compact K ⊆ A there is a t0 such
that ‖φt(x)− ψt(x)‖ < ε for all t ≥ t0 and all x ∈ K.

By the same argument applied to C([0, 1], B)∞, if 〈φ(0)
t 〉 and 〈φ(1)

t 〉 are homo-
topic asymptotic morphisms, then the φ(i)

t are equivalent to uniform asymptotic
morphisms ψ(i)

t which are homotopic via a path ψ
(s)
t (0 ≤ s ≤ 1) which are all

uniform and which even vary uniformly in s on compact sets.

(c) If A is nuclear, then a ∗-homomorphism from A to B∞ has a completely
positive contractive lifting to Cb([1,∞), B), for any B. Thus every asymptotic
morphism from A to any B is equivalent to an asymptotic morphism 〈φt〉, where
each φt is a completely positive linear contraction (such an asymptotic morphism
is called a completely positive asymptotic morphism). A completely positive
asymptotic morphism is automatically uniform.

25.1.6. Using 25.1.5(b), we may extend the idea of 25.1.2(f). If φ is a unital
asymptotic morphism fromA toB and x is invertible inA, then φt(x) is invertible
inB for sufficiently large t, and its (path) component inGL1(B) is independent of
t and depends only on the (path) component of x in GL1(A). If φ is an arbitrary
asymptotic morphism between not necessarily unital A and B, then by 25.1.2(d)
and (e) φ induces a homomorphism φ∗ : K1(A) → K1(B). By suspension, a
map φ∗ : K0(A) ∼= K1(SA) → K1(SB) ∼= K0(B) is obtained. It is routine to
check that this map agrees with the map induced from the φ∗ : V (A) → V (B)
of 25.1.2(f) if A and B are unital.

There is an even closer connection between asymptotic morphisms and K-
theory (25.1.8, 25.4.5).

Proposition 25.1.7. Let A and B be C∗-algebras, with A semiprojective
(4.7.1). Then every asymptotic morphism from A to B is homotopic to a ∗-homo-
morphism. The natural map from [A,B] to [[A,B]] is a bijection.

Proof. Let Jn be the ideal of elements of Cb([1,∞), B) which vanish on [n,∞).
Then [∪Jn]− = C0([1,∞), B). Given an asymptotic morphism 〈φt〉 from A to
B, the corresponding ∗-homomorphism from A to Cb([1,∞), B)/C0([1,∞), B)
lifts to a ∗-homomorphism from A to Cb([1,∞), B)/Jn, which can be naturally
identified with Cb([n,∞), B), for some n, i.e. with an asymptotic morphism 〈ψt〉
equivalent to 〈φt〉, where each ψt is a ∗-homomorphism from A to B. (Set
ψt = ψn for t < n.) But then 〈ψt〉 is homotopic to the constant asymptotic
morphism 〈ψn〉 in an evident way. This shows that the map from [A,B] to
[[A,B]] is surjective. But the same procedure can be used on maps from A to
C([0, 1], B) to show that if two homomorphisms are homotopic as asymptotic
morphisms, they are homotopic as homomorphisms, also proving injectivity. �
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Corollary 25.1.8. For any C∗-algebra B, [[C, B ⊗K]] ∼= V (B) (at least as a
set); [[S, B ⊗K]] ∼= K1(B), and hence [[S, SB ⊗K]] ∼= K0(B).

Proof. Combine 25.1.7 with 4.7.1(e) and 9.4.4. �

25.2. Tensor Products and Suspensions

25.2.1. One must be slightly careful in defining the tensor product of two as-
ymptotic morphisms. Suppose 〈φt〉 is an asymptotic morphism from A to B, and
〈ψt〉 from C to D. Then 〈φt⊗1〉 and 〈1⊗ψt〉 define asymptotic morphisms from
A and B, respectively, to C̃⊗max D̃ and hence homomorphisms to (C̃⊗max D̃)∞.
The images commute, so there is an induced homomorphism from A ⊗max B

to (C̃ ⊗max D̃)∞. The image is easily seen to lie in (C ⊗max D)∞, which sits
naturally as an ideal in (C̃⊗max D̃)∞; hence there is a well-defined (up to equiv-
alence) asymptotic morphism φ ⊗ ψ from A ⊗max B to C ⊗max D. The class
of φ ⊗ ψ in [[A ⊗max B, C ⊗max D]] depends only on the classes of φ and ψ in
[[A,C]] and [[B,D]].

However, there is a difficulty in doing the same construction for the minimal
cross norm. One obtains in the same way commuting homomorphisms from
A⊗max B into (C̃ ⊗ D̃)∞ and hence an asymptotic morphism from A⊗max B to
C⊗D, but it is not obvious in general that it factors through A⊗B. Of course,
if A or B is nuclear, there is no problem.

25.2.2. In particular, if φ is an asymptotic morphism from A to B, there is a
well-defined suspension Sφ = idS⊗φ from SA = S⊗A to SB = S⊗B; so there
is a suspension map from [[A,B]] to [[SA, SB]].

25.2.3. In fact, one can define tensor product morphisms more generally. If 〈φt〉
and 〈ψt〉 are asymptotic morphisms from A and B, respectively, into C, and if
limt→∞[φt(a), ψt(b)] = 0 for all a ∈ A, b ∈ B, there are induced commuting
homomorphisms from A and B to C∞ which induce an asymptotic morphism
from A⊗max B to C. The same construction works if 〈φt〉 and 〈ψt〉 are asymp-
totic morphisms into M(C) such that φt(a)ψt(b) ∈ C for all a, b, t. Even more
generality is possible: see, for example, the asymptotic morphism constructed in
25.5.1.

Caution: If φ(0) and φ(1) are asymptotic morphisms from A to C which both
asymptotically commute with the asymptotic morphism ψ from B to C, so that
φ(0)⊗ψ and φ(1)⊗ψ are defined, and [φ(0)] = [φ(1)] in [[A,C]], it is not necessarily
true that [φ(0) ⊗ ψ] = [φ(1) ⊗ ψ] in [[A⊗max B,C]], because there may not be a
path φ(s) all asymptotically commuting with ψ.

25.3. Composition

We want a way of composing asymptotic morphisms which generalizes com-
position of ordinary morphisms. Unfortunately, if 〈φt〉 and 〈ψt〉 are asymptotic
morphisms from A to B and B to C, respectively, then 〈ψt ◦φt〉 is not in general
an asymptotic morphism from A to C (although it is if one of the asymptotic



266 IX. FURTHER TOPICS

morphisms is an actual homomorphism). But the problem can be circumvented
by reparametrization:

Theorem 25.3.1. (a) If A, B, and C are separable C∗-algebras, and 〈φt〉 and
〈ψt〉 are uniform asymptotic morphisms from A to B and B to C, respectively ,
then for any increasing r growing sufficiently quickly the family 〈ψr(t) ◦ φt〉 is
an asymptotic morphism from A to C.

(b) The resulting asymptotic morphism depends up to homotopy only on the
homotopy classes of 〈φt〉 and 〈ψt〉, and thus defines a “composition” [[A,B]]×
[[B,C]]→ [[A,C]].

(c) Composition is associative, commutes with tensor products, and agrees with
ordinary composition for homomorphisms.

Proof. (a) Let A0 be a dense σ-compact ∗-subalgebra of A (e.g. the polynomials
in a countable generating set and their adjoints). Write A0 = ∪Kn, where
Kn is compact, Kn + Kn ⊆ Kn+1, KnKn ⊆ Kn+1, K∗n = Kn, and λKn ⊆
Kn+1 for |λ| ≤ n. Inductively choose tn ≥ tn−1, tn ≥ n, such that φt satisfies
the conditions of 25.1.4(b) with ε = 1/n and K = Kn, for all t ≥ tn. Let
K ′n ={φt(a) : a ∈ Kn, t ≤ tn+1}. K ′n is a compact subset of B. Let K ′′1 = K ′1,
and inductively let K ′′n+1 = K ′n+1∪(K ′′n+K ′′n)∪K ′′nK ′′n∪{λK ′′n : |λ| ≤ n}. Choose
rn so that ψt satisfies the conditions of 25.1.4(b) with ε = 1/n and K = K ′′n+2.
Then let r(t) be any increasing function with r(tn) ≥ rn for all n. If x, y ∈ A0,
then x, y ∈ Kn for some n. Then, for m > n and t between tm and tm+1, we
have∥∥ψr(t)(φt(x+ y))− [ψr(t)(φt(x)) + ψr(t)(φt(y))]

∥∥
≤
∥∥ψr(t)(φt(x+ y))− ψr(t)(φt(x) + φt(y))

∥∥
+
∥∥ψr(t)(φt(x) + φt(y))− [ψr(t)(φt(x)) + ψr(t)(φt(y))]

∥∥
≤
∥∥ψr(t)([φt(x) + φt(y)] + [φt(x+ y)− φt(x)− φt(y)])

− [ψr(t)(φt(x) + φt(y)) + ψr(t)(φt(x+ y)− φt(x)− φt(y))]

+ [ψr(t)(φt(x) + φt(y)) + ψr(t)(φt(x+ y)− φt(x)− φt(y))]

− ψr(t)(φt(x) + φt(y))
∥∥+ 1

m

≤
∥∥ψr(t)([φt(x) + φt(y)] + [φt(x+ y)− φt(x)− φt(y)])

− [ψr(t)(φt(x) + φt(y)) + ψr(t)(φt(x+ y)− φt(x)− φt(y))]
∥∥

+
∥∥ψr(t)(φt(x+ y)− φt(x)− φt(y))

∥∥+ 1
m .

Since x+ y ∈ Km, φt(x) + φt(y) and φt(x+ y)− φt(x)− φt(y) are in K ′′n+2, and
so the first term is at most 1

m . Also, ‖φt(x + y) − φt(x) − φt(y)‖ < 1
m , so the

second term is ≤ 1
m + 1

m . Thus we get

‖ψr(t)(φt(x+ y))− [ψr(t)(φt(x)) + ψr(t)(φt(y))]‖ < 4
m .
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The other conditions are similarly verified, including that ‖ψr(t)(φt(x))‖ < ‖x‖+
2
m for x ∈ Km and tm ≤ t ≤ tm+1.

Thus 〈ψr(t) ◦ φt〉 defines a ∗-homomorphism from A0 to C∞ which is norm-
decreasing, hence extends to a homomorphism from A to C∞. The homomor-
phisms defined for different r (increasing and satisfying r(tn) ≥ rn for all n) are
obviously homotopic, and so a well-defined class in [[A,C]] is obtained indepen-
dent of the choice of r.

Note that in fact the asymptotic morphism 〈ψr(t) ◦ φt〉 is uniform on the sets
Kn (we cannot assert that it is uniform on all compact subsets of A!) Also note
that for the construction it suffices to assume that 〈φt〉 is uniform on the Kn

and 〈ψt〉 is uniform on the K ′′n .

(b) If a different collection {K̃n} is used with A0 =
⋃
K̃n, then the rate at which

r must increase for the K̃n may be different; but if r increases fast enough to
work for both the Kn and K̃n, the same asymptotic morphism is obtained. Thus
the class in [[A,C]] is independent of the choice of the Kn.

If a different σ-compact ∗-subalgebra A1 is used, then the ∗-subalgebra A2

generated by A0 and A1 is also σ-compact, and an r which grows fast enough
for A2 (with respect to a suitably chosen increasing sequence of compact sets)
will work also for both A0 and A1; thus the class in [[A,C]] is independent of
the choice of A0.

If φ is replaced by an equivalent φ′ which is also uniform on the Kn, then
‖φt(a) − φ′t(a)‖ → 0 uniformly on the Kn. It follows easily that if r grows
sufficiently fast, then 〈ψr(t)◦φt〉 and 〈ψr(t)◦φ′t〉 are equivalent. A more elementary
argument shows that if ψ is replaced by an equivalent ψ′ which is also uniform
on the K ′′n , and r grows sufficiently rapidly, then 〈ψr(t) ◦ φt〉 and 〈ψ′r(t) ◦ φt〉 are
equivalent.

If 〈φ(0)
t 〉 and 〈φ(1)

t 〉 are homotopic uniform morphisms, then by the previous
paragraph and the last part of 25.1.4(b) we may assume that they are connected
by a homotopy 〈φ(s)

t 〉 of uniform morphisms uniform in s. Then in the con-
struction take K ′n to be {φ(s)

t (x) : x ∈ Kn, t ≤ tn, 0 ≤ s ≤ 1}. The set K ′n is
compact. The r thus obtained works simultaneously for all ψr(t) ◦ φ

(s)
t , and the

asymptotic morphisms thus obtained are obviously homotopic. Thus the class
in [[A,C]] depends only on the class of φ in [[A,B]]. Similarly, if ψ(s)

t is a uni-
form homotopy, then the numbers rn in the above proof can be chosen to work
simultaneously for all s; thus a single r can be chosen to work for all ψ(s)

r(t) ◦ φt,
so the class in [[A,C]] depends only on the class of ψ in [[B,C]].

A cleaner way of phrasing these arguments is: if ψ is a uniform asymptotic
morphism from B to C([0, 1], C) implementing a (uniform) homotopy from ψ(0)

to ψ(1), and φ a uniform asymptotic morphism from A to B, and r grows suf-
ficiently rapidly, then 〈ψr(t) ◦ φt〉 gives a homotopy between 〈ψ(0)

r(t) ◦ φt〉 and
〈ψ(1)
r(t)◦φt〉. Similarly, if φ is a uniform asymptotic morphism fromA to C([0, 1], B)

giving a homotopy between φ(0) and φ(1), and ψ is a uniform asymptotic mor-
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phism from B to C, form the asymptotic morphism ω = ψ ⊗ idC[0,1] from
C([0, 1], B) to C([0, 1], C), and choose a uniform representative 〈ωt〉; then for a
sufficiently fast-growing r the composition 〈ωr(t) ◦φt〉 gives a homotopy between
asymptotic morphisms equivalent to

〈ψr(t) ◦ φ
(0)
t 〉 and 〈ψr(t) ◦ φ

(1)
t 〉

respectively.

(c) The fact that the composition agrees with ordinary composition for homo-
morphisms is obvious. For associativity, suppose 〈φt〉, 〈ψt〉, and 〈ωt〉 are uniform
asymptotic morphisms from A to B, B to C, and C to D respectively. Choose A0

andKn as before, and let B0 = ∪K ′′n . Then B0 is a dense σ-compact ∗-subalgebra
of B. In constructing ω ◦ψ, use B0 and K ′′n ; then the construction of (ω ◦ψ) ◦ φ
works as before [even though ω ◦ ψ is not a uniform asymptotic morphism, it is
uniform on the K ′′n , which is all that is needed for the construction], and yields
an asymptotic morphism 〈ωs(t) ◦ψr(t) ◦ φt〉 which, for suitable choice of r and s,
is the same as is obtained from the construction for ω ◦ (ψ ◦ φ) using the Kn for
both steps.

The fact that composition commutes with tensor products is easier. Suppose
φ, ψ, ω, θ are uniform asymptotic morphisms from A to B, B to C, D to E,
and E to F respectively. Choose dense σ-compact ∗-subalgebras A0 of A and
D0 of D. Then A0�D0 is a dense σ-compact ∗-subalgebra of A⊗maxD. Choose
r growing fast enough that 〈ψr(t) ◦ φt〉, 〈θr(t) ◦ ωt〉, and 〈(ψ ⊗ θ)r(t) ◦ (φ ⊗ ω)t〉
are all asymptotic morphisms. Then 〈(ψr(t) ◦ φt) ⊗ (θr(t) ◦ ωt)〉 is equivalent to
〈(ψ ⊗ θ)r(t) ◦ (φ⊗ ω)t)〉. �

25.3.2. So one can form a category AM whose objects are separable C∗-algebras
and in which the morphisms from A to B are [[A,B]]. Similarly, we can take
the morphisms to be [[SA, SB]], obtaining a category SAM. There are obvious
functors SC∗ → AM→ SAM.

25.4. Additive structure

25.4.1. Next we want to obtain an additive structure on asymptotic morphisms.
We proceed just as in Ext and KK: if we consider asymptotic morphisms from A

to B⊗K, we can define addition by fixing an isomorphism from M2(K) to K and
taking the orthogonal sum. The resulting sum is well defined up to homotopy
and makes [[A, B ⊗K]] into an abelian semigroup. The addition is functorial in
all senses, and composition distributes over addition.

There is a natural map from [[A,B ⊗K]] to [[A⊗K, B ⊗K ⊗K]] ∼= [[A⊗K,
B ⊗ K]] given by tensoring on the identity map on K. This is a bijection since
the map from K to K⊗K given by x→ x⊗e11 is homotopic to an isomorphism.
(The proof of this in [Samuel 1997] is incorrect and incomplete; however, by a
judicious choice of bases it suffices to find a strongly continuous path of isometries
on a separable Hilbert space linking the identity to an isometry with infinite
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codimension. The operators Vs on L2[0, 1], where [Vsf ](t) = s−1/2f(st) for, say,
1 ≤ s ≤ 2, do the trick. The argument of 7.7.5 can also be used.) This fact also
shows that the (class of the) zero homomorphism is an additive identity.

25.4.2. There is also an “addition” on [[A,SB]] for any A and B. The interval
(0, 1) can be homotopically “squeezed” down to any subinterval, so any asymp-
totic morphism from A to SB is homotopic to an asymptotic morphism whose
range is supported on (a, b) for any 0 ≤ a < b ≤ 1 (in the sense that the com-
position with evaluation at s is the zero map from A to B for s /∈ (a, b)). If φ
and ψ are asymptotic morphisms from A to SB, move φ and ψ homotopically
to asymptotic morphisms φ′, ψ′ supported on (0, 1

2 ) and ( 1
2 , 1) respectively; then

〈φ′t + ψ′t〉 is an asymptotic morphism from A to SB whose class depends only
on [φ] and [ψ] in [[A,SB]]. We denote this class by [φ] + [ψ], and sometimes
by slight abuse of notation we write φ+ ψ for the actual asymptotic morphism
defined this way.

Warning: This “addition” on [[A,SB]] is not commutative in general. (It is
the C∗-analog of concatenation of loops.)

Proposition 25.4.3. (a) Addition on [[A,SB]] is associative.
(b) The two definitions of addition (of 25.4.1 and 25.4.2) agree on [[A, SB⊗K]].
(c) [[A,SB]] is a group; the inverse of an asymptotic morphism φ is φ◦ (ρ⊗ id),

where ρ : S → S is “reversal”, i .e. (ρ(f))(s) = f(1− s).

Proof. The proofs of (a) and (b) are straightforward exercises left to the
reader. They are good practice in working with homotopies. Proof of (c): it
suffices to show that the homomorphism idS + ρ : S → S is homotopic to the
zero homomorphism. Let h ∈ S be defined by

h(s) =

{
2s if 0 ≤ s ≤ 1

2 ,

1− 2s if 1
2 ≤ s ≤ 1.

Then (id + ρ)(f) = f ◦ h = f(h) for f ∈ S, where f(h) denotes functional
calculus. Then φ(r) : S → S defined by φ(r)(f) = f(rh)(0 ≤ r ≤ 1) gives a path
of homomorphisms from id + ρ to the zero homomorphism. (Alternately, from
a topological point of view, the concatenation of the identity loop on S1 with a
loop of winding number −1 is homotopic to a constant loop.) �

In a similar way, if φ and ψ are asymptotic morphisms from A to SC and B to
SC respectively, we can define an asymptotic morphism φ + ψ from A ⊕ B to
SC.

Although [[A, B ⊗K]] is not in general a group, it is in certain special cases
(e.g. [Dădărlat and Loring 1994]).

Definition 25.4.4. If A and B are (separable) C∗-algebras, then E(A,B) =
[[SA, SB ⊗K]].
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Using the natural map from [[SB, SC ⊗ K]] to [[SB ⊗ K, SC ⊗ K]] one may
obtain a composition E(A,B)× E(B,C)→ E(A,C). Thus there is an additive
category E whose objects are C∗-algebras and with E(A,B) the morphisms from
A to B. There is an obvious functor from SAM to E.

Proposition 25.4.5. The correspondences of 25.1.8 are (semi)group isomor-
phisms.

25.5. Exact Sequences

Perhaps the most important example of an asymptotic morphism is the “con-
necting morphism” associated to an exact sequence of C∗-algebras:

Proposition 25.5.1. (a) Let 0 −→ J −→ A
q−→ B −→ 0 be an exact sequence

of C∗-algebras. Suppose J has a continuous approximate unit 〈ut〉 which
is quasicentral for A (this will always be true if A is separable [Voiculescu
1976]). Choose a cross section σ for q. Then the function φt defined by
φt(f ⊗ b) = f(ut)σ(b) defines an asymptotic morphism from C0((0, 1))�B to
J which extends to an asymptotic morphism from SB to J .

(b) The class εq of this asymptotic morphism in [[SB, J ]] is independent of the
choice of σ and 〈ut〉.

It is difficult to motivate the definition of εq, but from knowing what properties it
should have one can work backwards. Some of the key properties the connecting
morphism should have are given in 25.7.1, along with an outline of a direct
proof that the desired properties hold; the reader is urged to work through
this problem both for justification of the definition and for practice in working
with the types of homotopies used in this section. The examples of 25.5.4 give
additional motivation for the relevance and importance of the definition.

Compare 25.5.1 to the association of an element of KK(SB, J) ∼= Ext(B, J)−1

to the extension if it is semisplit. The fact that this connecting morphism is de-
fined even for extensions which are not semisplit is the crucial difference between
E-theory and KK-theory.

Lemma 25.5.2. Let D be a C∗-algebra and 〈uλ〉 a net of positive elements of D
of norm ≤ 1. Let x ∈ D and f ∈ C0((0, 1)).

(a) If limλ→∞[uλ, x] = 0, then limλ→∞[f(uλ), x] = 0
(b) If limλ→∞ uλx = x, then limλ→∞ f(uλ)x = 0.

Proof. For both parts, we may assume f is a polynomial vanishing at 0 and 1,
since such polynomials are dense in C0((0, 1)) by the Stone–Weierstrass theo-
rem. For polynomials, (a) follows immediately from the fact that ‖[yk, x]‖ ≤
k ‖y‖k−1‖[y, x]‖ for any y and k.

[
Write

[yk, x] = (ykx− yk−1xy) + (yk−1xy − yk−2xy2) + · · ·+ (yxyk−1 − xyk)

= yk−1[y, x] + yk−2[y, x]y + · · ·+ [y, x]yk−1.
]
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Similarly, writing ykx−x = (ykx−yk−1x)+ · · ·+(yx−x), we obtain ‖ykx−x‖ ≤
k ‖yx− x‖ for ‖y‖ ≤ 1. For part (b), write f(z) =

∑n
k=1 αkz

k; then
∑n
k=1 αk =

f(1) = 0. Then

n∑
k=1

αku
k
λx =

n∑
k=1

αku
k
λx−

n∑
k=1

αkx =
n∑
k=1

αk(ukλx− x).

By the previous observation, each term approaches 0 as λ→∞. �

Proof of 25.5.1. The maps θt : (f, x) → f(ut)σ(x) clearly give a map from
C0((0, 1))×B to Cb([1,∞), J)). (Continuity in t follows from continuity of func-
tional calculus.) If τ is another cross section for q, then σ(x) − τ(x) ∈ J for
any x ∈ B, and so by 25.5.2 limt→∞ ‖f(ut)σ(x) − f(ut)τ(x)‖ = 0 for any f ;
so modulo C0([1,∞), J) θ does not depend on the choice of σ. For fixed x,
θt( ·, x) is linear in f for each t. The fact that 〈θt(f, · )〉 is asymptotically lin-
ear in x for fixed f follows easily from 25.5.2, since σ(x + y) − σ(x) − σ(y),
σ(x∗) − σ(x)∗, and σ(λx) − λσ(x) are all in J for any x, y ∈ B. It also follows
easily from 25.5.2 that ‖f(ut)σ(x)g(ut)σ(y) − (fg)(ut)σ(xy)‖ → 0 as t → ∞
for any f, g, x, y, since σ(xy)− σ(x)σ(y) ∈ J , (fg)(ut) = f(ut)g(ut), and 〈ut〉 is
quasicentral. ‖f(ut)σ(x)‖ ≤ ‖f‖‖σ(x)‖. Thus θ defines a ∗-homomorphism ψ

from C0((0, 1))�B to J∞; since ψ is independent of the choice of σ, and for any
x ∈ B we can choose a σ with ‖σ(x)‖ = ‖x‖, we have ‖ψ(f⊗x)‖ ≤ ‖f‖‖x‖. Thus
ψ extends to a ∗-homomorphism from SB to J∞, i.e. an asymptotic morphism.
The set of quasicentral continuous approximate units is convex, and by continu-
ity of functional calculus the “straight-line” homotopy between two continuous
quasicentral approximate units induces a homotopy between the corresponding
asymptotic morphisms. Thus the class of ψ in [[SB, J ]] is independent of the
choice of 〈ut〉. �

Remark 25.5.3. While this argument is very much in the spirit of 25.2.3, it
would be misleading to say that 25.5.1 is merely an application of 25.2.3. For,
although there is an obvious related asymptotic morphism 〈ψt〉 from S to J

given by ψt(f) = f(ut) (in fact, this is a path of actual ∗-homomorphisms), it is
important to realize that there is generally no asymptotic morphism ω from B

to J such that φ = ψ ⊗ ω in the sense of 25.2.3. In fact, if there is such an ω,
then (modulo the caution of 25.2.3) the argument of 25.5.5(b) below shows that
the tensor product morphism is homotopic to 0.

Examples 25.5.4. (a) Let φ be an asymptotic morphism from A to B. As
in 25.1.4(b), we get a naturally associated extension 0 → SB → E → A → 0,
with E ⊆ A ⊕ CB. Choose the approximate unit for C0((0, 1)) to be 〈ht〉,
where ht(t ≥ 3) is the function which is 0 on [0, 1/(t+1)] and [1 − 1/(t+1), 1],
1 on [1/t, 1− 1/t] and linear on [1/(t+1), 1/t] and [1− 1/t, 1− 1/(t+1)]. Thus,
if f ∈ C0((0, 1)), then f(ht) consists of two copies of f , one transferred to
[1/(t+1), 1/t] (more precisely, [f(ht)]

(
1−s
t+1 + s

t

)
= f(s)) and the other, with
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orientation reversed, transferred to [1−1/t, 1−1/(t+1)], extended by 0 on the
rest of [0, 1]. By choosing a cross section σ for the quotient map q : E → A

which vanishes on [ 1
2 , 1], the copy of f on [1−1/t, 1−1/(t+1)] has no effect on

the asymptotic morphism ψ from SA to SB defined by the exact sequence.
Expanding the interval [1/(t+1), 1/t] to [0, 1

2 ] via a homotopy converts ψ into
an asymptotic morphism homotopic to the suspension Sφ.

(b) As an important special case of (a), let 0 → S → C → C → 0 be the
standard extension of C by S (19.2). The asymptotic morphism associated to
the exact sequence is homotopic to the identity map on S.

(c) If

0 - J
i
- A �

σ

q
- B - 0

is a split exact sequence, there is an associated exact sequence 0 → SJ →
E → A → 0, where E is the C∗-subalgebra of C([0, 1], A) generated by SJ

and {τ(x) : x ∈ A}, where [τ(x)](s) = (1 − s)x + s[σ ◦ q](x). The class of
the corresponding asymptotic morphism from SA to SJ is called the splitting
morphism of the exact sequence, denoted ηq (it should properly be ηq,σ since it
depends on the choice of σ). ηq is the exact analog in this context of the splitting
morphism of KK-theory defined in 17.1.2(b), which is exactly the KK-element
defined by this extension under the standard identification of Ext(A,SJ)−1 with
KK(A, J).

The next simple proposition is good practice in working with homotopies of
asymptotic morphisms:

Proposition 25.5.5. Let

0 −→ J −→ A
q−→ B −→ 0

be an exact sequence of separable C∗-algebras.

(a) If 0 → SJ → SA
Sq−→ SB → 0 is the suspended exact sequence, then

εSq = Sεq in [[S2B,SJ ]]
(b) If 0 −→ J −→ A

q−→ B −→ 0 splits, then εq = [0] in [[SB, J ]].

[Caution: The associated element ηq of [[SA, SJ ]] of 25.5.4(c) is not 0 in general!]

Proof. (a) The asymptotic morphism associated to Sq is given as follows: let
〈ut〉 be a quasicentral continuous unit for J in A and σ a cross section for q, and
let ht be as in 25.5.4(a); then φt(f ⊗ (g ⊗ x)) = f(ht ⊗ ut)(g ⊗ σ(x)), that is, if
it is thought of as a function from (0, 1) to J (for fixed t, f, g, x) its value at s is
f(ht(s)ut)g(s)σ(x). For 0 ≤ r < 1 define φ(r)

t (f⊗(g⊗x)) to be the function whose
value at s is f(ht+r/(1−r)(s)ut)g(s)σ(x), and φ(1)(f ⊗ (g⊗x)) to be the function
whose value at s is f(ut)g(s)σ(x). Then the φ(r) define an asymptotic morphism
from S2B to C([0, 1], SJ) (this is proved exactly like 25.5.1; the continuity in r
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as r → 1 is the only additional thing to be checked), which gives a homotopy
between φ(0) and φ(1). We have [φ(0)] = εSq and [φ(1)] = Sεq.

(b) Let φ(1) as above be the constructed representative for εq using a splitting
σ, and define φ

(s)
t (f ⊗ x) = f(sut)σ(x). Then the φ

(s)
t define an asymptotic

morphism from SB to C([0, 1], J) (the proof of this is almost identical to a
subset of the proof of 25.5.1) which gives a homotopy between φ(0) = 0 and
φ(1). �

Proposition 25.5.6. If

0 - J
i
- A �

σ

q
- B - 0

is a split exact sequence of separable C∗-algebras and ηq is the splitting morphism
of 25.5.4(c), then

(a) ηq ◦ [Si] = [idSJ ] in [[SJ, SJ ]], and
(b) [Si] ◦ ηq = [idSA]− [S(σ ◦ q)] in [[SA, SA]].

Proof. The two proofs are nearly identical. Choose a cross section ω for the
map from E to A. While we can take ω = τ of 25.5.4(c), it is more convenient
to choose ω so that [ω(x)](s) = x for 0 ≤ s ≤ 1

3 and [ω(x)](s) = [σ ◦ q](x) for
2
3 ≤ s ≤ 1. If 〈ut〉 is a continuous approximate unit for J which is quasicentral
for A, then a simple compactness argument shows that 〈ht⊗ ut〉 is a continuous
approximate unit for SJ which is quasicentral for E, where ht is as in 25.5.4(a).
Thus a representative for ηq is φ, where φt(f⊗x) = f(ht⊗ut)ω(x). Thought of as
a function from (0, 1) to J (for fixed t, f, x), the value at s is f(ht(s)ut)[ω(x)](s).
If we compose with Si on the right [resp. left], we get an asymptotic morphism
from SJ to SJ [resp. from SA to SA] whose value at s (for fixed t, f, x) is
given by the same formula. For 0 ≤ r ≤ 1 let vt ∈ C([0, 1], Ã) be defined by
vt(r) = r1Ã + (1 − r)ut. Then 〈vt〉 is a net of positive elements of norm ≤ 1
in C([0, 1], Ã), continuous in t, and a simple compactness argument shows that,
with D = C([0, 1], Ã), 〈vt〉 satisfies the hypotheses of 25.5.2(a) for x ∈ C([0, 1], A)
and of 25.5.2(b) if x ∈ C([0, 1], J). Thus, if we define φ

(r)
t (f ⊗ x) to be the

function whose value at s is f(ht(s)vt(r))[ω(x)](s), an argument identical to the
proof of 25.5.1 shows that 〈φ(r)

t 〉 defines an asymptotic morphism from SJ to
C([0, 1], SJ) [resp. from SA to C([0, 1], SA)] giving a homotopy between 〈φt〉
and the asymptotic morphism 〈ψt〉 from SA to SA which, as a function of s
for fixed t, f, x, takes value f(ht(s))[ω(x)](s). As in 25.5.4(a), s → f(ht(s))
consists of two “copies” of f , one supported on [1/(t+1), 1/t] and the other,
with orientation reversed, on [1−1/t, 1−1/(t+1)]. Since [ω(x)](s) = x on [0, 1

3 ]
and [ω(x)](s) = [σ ◦ q](x)(= 0 if x ∈ J) on [ 2

3 , 1], we get that ψ is homotopic to
idSJ [resp. that ψ is homotopic to idSA + (ρ⊗ (σ ◦ q))]. �
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Corollary 25.5.7. If

0 - J
i
- A �

σ

q
- B - 0

is a split exact sequence of separable C∗-algebras and ηq is the splitting morphism
of 25.5.4(c), then ηq ⊕ [Sq] is an isomorphism in SAM from A to J ⊕ B, with
inverse [Si] + [Sσ].

Compare this with the fact that the splitting morphism of KK-theory defines a
KK-equivalence between A and J ⊕B in exactly the same manner (19.9.1).

We get the following crucial consequence of this by applying 22.3.1:

Corollary 25.5.8. The canonical functor from SC∗ to E factors through KK,
i .e. there is a functor F : KK → E sending KK(A,B) to E(A,B) for every
separable A,B. F respects addition and tensor products (hence suspensions).

An explicit formula for the map is given in 25.5.1, identifying KK(SB, J) with
Ext(B, J)−1. (Of course, it is not a priori obvious that this formula gives a
well-defined map.)

Corollary 25.5.9 (Bott Periodicity). For any A and B, there are canon-
ical isomorphisms E(A,B) ∼= E(S2A,B) ∼= E(A,S2B) ∼= E(SA, SB), which
are natural in A and B. Specifically , if φ is the homomorphism from S to
M2(C0(R3)) corresponding to the generator of K1(C0(R3)), then the map [φ] ∈
E(C, C0(R2)) is an isomorphism in E, whose inverse is Sεq for the Toeplitz ex-
tension 0 −→ K −→ T0

q−→ S −→ 0 (9.4.2); the isomorphism from E(A,B)
to E(S2A,B) is given by tensoring with εq (or composing on the left with εq ⊗
[idSA]). Similarly the isomorphism E(A,B) ∼= E(A,S2B) is given by tensoring
with [φ]. The isomorphism from E(A,B) to E(SA, SB) is given by tensoring
with idS .

A direct proof of 25.5.9 can be given; in fact, it is virtually identical to the
argument in 9.4.2.

We can thus define E0(A,B)=E(A,B) and E1(A,B)=E(A,SB)∼=E(SA,B);
then E1(SA,B) ∼= E1(A,SB) ∼= E(A,B).

We now turn to general exact sequences.

Theorem 25.5.10. E is half-exact : for any extension 0 −→ J
i−→ A

q−→ B −→
0 of separable C∗-algebras, and every separable C∗-algebra D, the sequences

E(D,J) i∗−→ E(D,A)
q∗−→ E(D,B),

E(B,D)
q∗−→ E(A,D) i∗−→ E(J,D)

are exact in the middle, where i∗ [resp. i∗] is composition on the right [resp. on
the left ] with [i] ∈ E(J,A), etc.
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Note that no semisplitting is assumed.
We need two lemmas for the proof of 25.5.10. If 0 −→ J

i−→ A
q−→ B −→ 0 is

an exact sequence as above, let 0 −→ SJ −→ CA
p−→ Cq −→ 0 be the associated

mapping cone sequence. Let α be the quotient map from Cq to A.

Lemma 25.5.11. [Si ◦ εp] = [Sα] in [[SCq, SA]].

Proof. We proceed as in the proof of 25.5.6. Choose a continuous quasicentral
approximate unit 〈ut〉 for J in A; if ht is as in 25.5.4(a), then 〈ht ⊗ ut〉 is a
continuous approximate unit for SJ which is quasicentral for CA. Choose a cross
section σ for p. Then for f ∈ S, x ∈ Cq, the constructed representative for εp is
the function φt(f ⊗x) = f(ht⊗ut)σ(x). Thought of as a function from (0, 1) to
J (for fixed t, f, x), the value at s is f(ht(s)ut)[σ(x)](s). If we compose with Si,
we get an asymptotic morphism from SCq to C0((0, 1), A) whose value at s (for
fixed t, f, x) is given by the same formula. Now for 0 ≤ r ≤ 1 let vt ∈ C([0, 1], Ã)
be defined by vt(r) = r1Ã + (1− r)ut. Then as in 25.5.6, if we define φ(r)

t (f ⊗x)
to be the function whose value at s is f(ht(s)vt(r))[σ(x)](s), 〈φ(r)

t 〉 defines an
asymptotic morphism from SCp to C([0, 1], SA) giving a homotopy between 〈φt〉
and the asymptotic morphism 〈ψt〉 from SCq to SA which, as a function of s
for fixed t, f, x, takes value f(ht(s))[σ(x)](s). As in 25.5.4(a), s → f(ht(s))
consists of two “copies” of f , one supported on [1/(t+1), 1/t] and the other,
with orientation reversed, on [1−1/t, 1−1/(t+1)]. Since [σ(x)](s)→ 0 as s→ 1,
for large t the second copy of f has negligible effect (for fixed f and x). Thus
〈ψt〉 is equivalent to the asymptotic morphism 〈ωt〉, where [ωt(f ⊗ x)](s) =
f̃t(s)[σ(x)](s), where f̃t is the function equal to f ◦ ht on [1/(t+1), 1/t] and 0
elsewhere. Next define [ω(r)

t (f ⊗ x)](s) = f̃t(s)[σ(x)](s − r) ([σ(x)](s − r) =
[σ(x)](0) = x(0) if s − r < 0); 〈ω(r)

t 〉 defines a homotopy between ω = ω(0) and
ω(1), which is given by the formula [ω(1)(f ⊗ x)](s) = f̃t(s)x(0). We can then
homotopically expand [1/(t+1), 1/t] to all of [0, 1] to convert ω(1) to Sα. �

Lemma 25.5.12. Let 0 −→ J
i−→ A

q−→ B −→ 0 be an extension of separable
C∗-algebras, and D a separable C∗-algebra.

(a) If h is an asymptotic morphism from D to A, and [q◦h] = [0] in [[D,B]], then
there is an asymptotic morphism k from SD to SJ such that [Si ◦ k] = [Sh]
in [[SD, SA]].

(b) If h is an asymptotic morphism from A to D, and [h◦i] = [0] in [[J,D]], then
there is an asymptotic morphism k from S2B to S2D such that [k ◦ S2q] =
[S2h] in [[S2A,S2D]].

Proof. (a) Let 〈φ(s)
t 〉 be a homotopy from q◦h to 0. Then φ(s) is an asymptotic

morphism from D to C0([0, 1), B), and yields an asymptotic morphism ψ =
h ⊕ φ(s) from D to Cq with h = α ◦ ψ. Then by 25.5.11 we have [Sh] =
[Sα] ◦ [Sψ] = [Si] ◦ (εp ◦ [Sψ]), so k may be taken to be any representative of
εp ◦ [Sψ].
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(b) First suppose [h◦α] = [0] in [[Cq, D]], and let φ(s) be a homotopy from h◦α
to 0. The map φ(s) is an asymptotic morphism from Cq to C0([0, 1), D); and
since α = 0 on the ideal SB of Cq, restricting φ(s) to SB (or composing with
the inclusion from SB into Cq) gives an asymptotic morphism k from SB to
C0((0, 1), D) = SD.

We claim that [k ◦ Sq] = [Sh] in [[SA, SD]]. For 0 ≤ r < 1 let βr be the
homeomorphism of [r, 1] to [0, 1] given by βr(λ) = (1 − r)−1(λ − r), and γr the
inverse homeomorphism. Then for f ∈ S, x ∈ A, 0 ≤ r ≤ 1, 0 < s < 1, t ≥ 1,
define

[ψ(r)
t (f ⊗ x)](s) =

{
f(s)ht(x) if s ≤ r,
φ

(βr(s))
t (f(r)x⊕ [(f ◦ γr)⊗ q(x)]) if s > r.

One must check continuity in s at s = r for fixed r. Continuity in r as r → 1
follows from the fact that for fixed f , f ◦γr → 0 as r → 1. 〈ψ(r)

t 〉 thus defines an
asymptotic morphism from SA to C([0, 1], SD) giving a homotopy from ψ(0) =
k ◦ Sq to ψ(1) = Sh.

Now under the hypotheses of (b), we have that [Sh ◦ Si] = 0, so 0 = [Sh] ◦
[Si] ◦ εp = [Sh ◦ Sα] by 25.5.11, so by the first part of the argument we get k
from S2B to S2D with the desired property. �

Proof. Proof of 25.5.10 It follows immediately from 25.5.12 that these se-
quences are exact in the middle:

[[SD, SJ ]] Si∗−→ [[SD, SA]]
Sq∗−→ [[SD, SB]],

[[S2B,S2D]]
S2q∗−→ [[S2A,S2D]] S

2i∗−→ [[S2J, S2D]]

(we have imSi∗ ⊆ kerSq∗ by functoriality). These, combined with Bott period-
icity, give the desired exact sequences for E. �

Corollary 25.5.13. E-Theory has six-term exact sequences in each variable
for arbitrary extensions of separable C∗-algebras. Specifically , if 0 −→ J

j−→
A

q−→ B −→ 0 is a short exact sequence of separable C∗-algebras, and D is any
separable C∗-algebra, then the following sequences are exact :

E0(D,J)
i∗- E0(D,A)

q∗- E0(D,B)

E1(D,B)

εq∗
6

�q∗
E1(D,A) �

i∗
E1(D,J)
?
εq∗

E0(B,D)
q∗- E0(A,D)

i∗ - E0(J,D)

E1(J,D)

ε∗q
6

� i∗
E1(A,D) �

q∗
E1(B,D)

?
ε∗q
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Proof. This mostly follows immediately from 21.4.4 and 25.5.9. The only thing
remaining to check is that the connecting maps, which are of the form i∗ ◦ e−1

∗
(or e∗−1 ◦ i∗), are equal to εq∗; this is an immediate consequence of 25.7.1(c). �

25.6. Axiomatic E-Theory

We begin by recalling from earlier sections some of the properties that half-
exact homotopy-invariant functors enjoy. If F is a half-exact homotopy-invariant
functor from SC∗ to an additive category A, then by suspension F has long exact
sequences (21.4.3, 21.4.4); in particular, if 0→ J → A→ B → 0 is a short exact
sequence of separable C∗-algebras, and one of J , A, B is contractible, then the
induced map between the other two is an isomorphism (with a degree shift if A
is contractible). In addition, if F is stable, then F factors through KK (22.1.2,
22.3.1), and hence satisfies Bott Periodicity in the sense of 25.5.9.

The main result of this section is the universal property of E:

Theorem 25.6.1. Any functor from SC∗ to an additive category A, which is
homotopy-invariant and half-exact , factors uniquely through AM; if the functor
is also stable, it factors uniquely through E. In other words, if F is a homotopy-
invariant , stable, half-exact covariant [resp. contravariant ] functor from SC∗

to an additive category A, then there is a pairing F (A) × E(A,B) → F (B)
[resp. E(A,B)×F (B)→ F (A)] which is compatible (associative) with respect to
composition in E, and which agrees with usual functoriality for homomorphisms.

To prove this theorem, we first show that every element of E(A,B) can be
canonically written as an ordinary homomorphism composed with the inverse of
another. This fact is closely related in spirit to the canonical factorization of
KK-elements (17.8.3) used to prove the universality of KK-theory.

If φ is an asymptotic morphism from A to B, then there is an associated
extension 0 → C0([1,∞), B) → D → A → 0: if π : Cb([1,∞), B) → B∞ is
the quotient map, set D = π−1(A) (or the pullback of π and idA if φ is not
faithful). We denote also by π the quotient map from D to A; x→ 〈φt(x)〉 gives
a cross section for π. Since C0([1,∞), B) is contractible, [π] is an isomorphism
in E(D,A). Denote by ρt the map from E to B given by evaluation at t.

Proposition 25.6.2. [ρ1] ◦ [π]−1 = [φ] in E(A,B).

Proof. It suffices to show that [φ] ◦ [π] = [ρ1], which is almost obvious: the
asymptotic morphism 〈φt ◦ π〉 from D to B is equivalent to the asymptotic
morphism 〈ρt〉, which is obviously homotopic to the constant morphism ρ1. �

Proof of 25.6.1. We prove the result for F covariant; the contravariant
case is essentially identical. If φ is an asymptotic morphism from A to B,
let 0 → C0([1,∞), B) → D

π−→ A → 0 be the associated exact sequence as
above. Then F (π) is an isomorphism in A from F (D) to F (A) by the long
exact sequence for F and the contractibility of C0([1,∞), B). We then set
F ([φ]) = F (ρ1) ◦ F (π)−1. To show that this is well defined, suppose φ(0) and
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φ(1) are asymptotic morphisms from A to B which are homotopic via φ(s). Then
we have corresponding extensions 0 −→ C0([1,∞), B) −→ D(i) π(i)

−→ A −→ 0 for
i = 0, 1, and 0→ C0([1,∞), IB)→ D

π−→ A→ 0, and for each i a commutative
diagram

0 - C0([1,∞), IB) - D
π - A - 0

0 - C0([1,∞), B)
?
γ(i)

- D(i)

?
γ(i)

π(i)
- A
?
idA

- 0

where γ(i) : Cb([1,∞), C([0, 1], B)) → Cb([1,∞), B) is evaluation at i = 0, 1 ∈
[0, 1]. By functoriality, F (γ(i)) is an isomorphism from F (D) to F (D(i)), and
that F (φ(i)), as defined above as F (ρ(i)

1 ) ◦ F (π(i))−1, is equal to

F (β(i)) ◦ F (ρ1) ◦ F (γ(i))−1 ◦ F (π(i))−1 = F (β(i)) ◦ F (ρ1) ◦ F (π)−1,

where β(i) : C([0, 1], B)→ B is evaluation at i. But β(0) and β(1) are homotopic,
so F (β(0)) = F (β(1)), i.e. F (φ(0)) = F (φ(1)), and

F ([φ]) ∈ HomA(F (A), F (B))

is well defined.
It is obvious that this definition of F ([φ]) agrees with the usual functorial

definition of F (φ) if φ is an actual ∗-homomorphism; and φ → F ([φ]) respects
composition since F respects composition of homomorphisms and their inverses
by functoriality. Thus F factors through AM.

By composing F with the suspension functor, by the same argument we can
associate to an element of [[A,B]] an element of HomA(F (SA), F (SB)).

If F is also stable, it satisfies Bott Periodicity, and there are standard isomor-
phisms between F (A), F (S2A), F (A⊗K), and F (S2A⊗K), for any A. Using
these identifications, for any element of E(A,B) we get a well-defined element
of HomA(F (S2A⊗K), F (S2B ⊗K)) ∼= HomA(F (A), F (B)), giving the desired
factorization of F . �

Theorem 25.6.3. Let A be a separable C∗-algebra for which KK(A, · ) is half-
exact . Then E(A,B) is naturally isomorphic to KK(A,B) for every separable B.
In particular , if A is separable nuclear (or K-nuclear (20.10.2)), then E(A,B) ∼=
KK(A,B) for every separable B.

Proof. By 25.6.1 there is a pairing KK(A,D) × E(D,B) → KK(A,B) for
every D,B. Setting D = A, one can apply this pairing to 1A to get a homo-
morphism from E(A,B) to KK(A,B) for any B. It is easy to check that this
homomorphism is an inverse to the canonical homomorphism from KK(A,B) to
E(A,B) from 25.5.8. �
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Cuntz [1997] has given an elegant unified approach to KK-theory, E-theory,
and cyclic homology. Houghton-Larsen and Thomsen [1996] also showed how to
obtain KK-theory via asymptotic morphisms (25.7.3).

25.7. EXERCISES AND PROBLEMS

25.7.1. Let 0 −→ J
j−→ A

q−→ B −→ 0 be an exact sequence of separable
C∗-algebras, and εq the associated asymptotic morphism from SB to J as in
25.5.1.

(a) Show directly that [j] ◦ εq = [0] in [[SB,A]] by using the homotopy φ(s)
t (f ⊗

x) = f((1− s)ut + s1Ã)σ(x).

(b) Show directly that εq ◦ [Sq] = [0] in [[SA, J ]] by using the homotopy φ(s)
t (f⊗

y) = f(ut)[(1− s)σ(q(y)) + sy] followed by the homotopy of 25.5.5(b).

(c) Let 0 −→ J
e−→ Cq −→ CB −→ 0 be the associated “excision” sequence.

Use the following homotopy to show directly that [e] ◦ εq = [j] in [[SB,Cq]],
where j : SB → Cq is the natural inclusion: let φ(r)

t (f ⊗x) be the element of Cq
whose A-coordinate is f((1 − r)ut + r1Ã)σ(x) and whose CB-coordinate is the
function whose value at s is f(s+1−r)x (where f(s+1−r) = 0 if s+1−r ≥ 1).

(d) Show directly that the induced maps εq∗ : Ki(SB) ∼= K1−i(B) → Ki(J)
(25.1.6) are exactly the connecting maps in the six-term exact sequence of K-
theory associated to the extension.

25.7.2. This problem explores other equivalence relations on asymptotic mor-
phisms which have been important in applications.

(a) Two asymptotic morphisms 〈φt〉 and 〈ψt〉 are unitarily equivalent [resp. mul-
tiplier unitarily equivalent ] if there is a unitary u in B̃ [resp. M(B)] such that
uφt(a)u∗ = ψt(a) for all a ∈ A. Two asymptotic morphisms 〈φt〉 and 〈ψt〉
are asymptotically unitarily equivalent [resp. asymptotically multiplier unitar-
ily equivalent ] if there is a path 〈ut〉 of unitaries in B̃ [resp. M(B)] such that
limt→∞ ‖ψt(a)− utφt(a)u∗t ‖ = 0 for all a ∈ A.

(b) [Multiplier] unitarily equivalent asymptotic morphisms are not in general
homotopic, unless the implementing unitary is in U(M(B))0. If 〈φt〉 and 〈ψt〉
are [multiplier] asymptotically unitarily equivalent, then ψ is homotopic to an
asymptotic morphism [multiplier] unitarily equivalent to φ.

(c) Asymptotic unitary equivalence of asymptotic morphisms is a useful notion,
but it has a defect: an asymptotic morphism is rarely multiplier asymptotically
unitarily equivalent to its reparametrizations. There is a stronger notion: two
asymptotic morphisms 〈φt〉 and 〈ψt〉 from A to B are decoupled asymptotically
unitarily equivalent if there is a continuous function (s, t) → us,t from [1,∞) ×
[1,∞) to U(M(B)) such that lims,t→∞ ‖ψt(a)− us,tφs(a)u∗s,t‖ = 0 for all a ∈ A.
Decoupled unitary equivalence is a very strong condition. For example, we have
the following fact, which is crucial in Phillips’ approach to the classification
problem for purely infinite algebras.
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Proposition. Let 〈φt〉 be an asymptotic morphism from A to B. If A is
separable and 〈φt〉 is decoupled asymptotically unitarily equivalent to itself , then
〈φt〉 is homotopic to a homomorphism from A to B.

Sketch of proof. Let 〈us,t〉 be the implementing family of unitaries. Re-
placing us,t by u∗t,tus,t, we may assume ut,t = 1 for all t. Choose an increasing
sequence 〈Fn〉 of finite subsets of A with dense union, and find an increasing
sequence 1 < t1 < t2 < · · · with tn → ∞, such that φtn is approximately
∗-linear and multiplicative within 2−n on Fn, and such that ‖utn,tφtn+1(a)u∗tn,t−
φtn(a)‖ < 2−n for a ∈ Fn and t ≥ tn. For tn ≤ t ≤ tn+1, define vt =
utn,tutn−1,tn . . . ut1,1, and let ψt(a) = v∗t φt(a)vt. Then 〈ψt〉 is an asymptotic
morphism which is asymptotically unitarily equivalent to φ, hence homotopic
since v1 = 1. For a ∈ Fn, ω(a) = limt→∞ ψt(a) exists in B, and ω is a homo-
morphism. The constant asymptotic morphism 〈ω〉 is equivalent to ψ. �

25.7.3. [Houghton-Larsen and Thomsen 1996] If A and B are C∗-algebras, let
[[A,B]]cp be the set of homotopy classes of completely positive asymptotic mor-
phisms from A to B (where the asymptotic morphisms in the homotopy are also
required to be completely positive, i.e. the homotopy is in [[A,C([0, 1], B)]]cp).

(a) Show that all constructions and results from 25.1-25.4 have exact analogs in
this setting. Define Ecp(A,B) = [[SA, SB ⊗K]]cp.

(b) Suppose 0 → J → A → B → 0 is a semisplit exact sequence of separable
C∗-algebras. The formula of 25.5.1 defines an asymptotic morphism which is
equivalent to a completely positive asymptotic morphism, if the section σ is
chosen completely positive. Results analogous to 25.5.1-25.5.14 hold.

(c) As in 25.5.10, Ecp has six-term exact sequences in each variable for semisplit
extensions.

(d) If Ecp is the corresponding category with separable C∗-algebras as objects
and Hom-sets Ecp(A,B), then a proof analogous to that of 25.6.1 shows that
Ecp is the universal homotopy-invariant, stable functor with exact sequences for
semisplit extensions. Thus the natural map from KK to Ecp is an isomorphism,
i.e. KK(A,B) ∼= Ecp(A,B) for any separable A,B.

(e) Since Ecp(A,B) = E(A,B) for any B if A is nuclear, we get an alternate
proof of 25.6.3 for A nuclear.

25.7.4. [Guentner et al. 1997] Here is an alternate approach to constructing the
product.

(a) If B is a C∗-algebra, let αB = B∞ (25.1.4(a)), and inductively let αnB =
α(αn−1B). There is a natural inclusion of αnB into αn+1B as “constant”
functions. α is a functor: a ∗-homomorphism φ : A → B defines a natural
∗-homomorphism αφ : αA → αB. Two ∗-homomorphisms φ(0), φ(1) from A to
αnB are n-homotopic if there is a ∗-homomorphism φ : A→ αnC([0, 1], B) with
(αnπs) ◦ φ = φ(s) for s = 0, 1. Denote by [[A,B]]n the set of n-homotopy classes
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of ∗-homomorphisms from A to αnB. There are natural maps from [[A,B]]n to
[[A,B]]n+1 (corresponding to the inclusion αnB ⊆ αn+1B) and from [[A,B]]n to
[[αA,αB]]n+1 (given by [φ]→ [αφ]) for each n.

(b) There is a natural product [[A,B]]n × [[B,C]]m → [[A,C]]n+m given by
[φ] × [ψ] = [(αnψ) ◦ φ]. Thus, if [[A,B]]∞ = lim−→[[A,B]]n, there is a natural
product [[A,B]]∞ × [[B,C]]∞ → [[A,C]]∞.

(c) Show that if A is separable, then the natural map [[A,B]]1 → [[A,B]]n is a
bijection for any n and any C∗-algebra B [Guentner et al. 1997, Theorem 2.16].
Thus [[A,B]]∞ ∼= [[A,B]] as defined in 25.1.1, and one obtains a product on
[[ · , · ]]. Show that this agrees with the product as defined in 25.3.1.

Compare the constructions and results of this problem with those of 18.13.3.

25.7.5. Let B be the smallest class of separable C∗-algebras closed under (N1)−
(N3) of 22.3.4, and closed under E-equivalence (isomorphism in E). Show by
arguments essentially identical to those in Section 23 that if A and B are sep-
arable C∗-algebras, with A ∈ B, then (A,B) satisfies the E-theory versions of
the UCT and (if K∗(B) is finitely generated) the KTP: there are natural exact
sequences

0 −→ Ext1
Z(K∗(A),K∗(B)) δ−→ E∗(A,B)

γ−→ Hom(K∗(A),K∗(B)) −→ 0,

0 −→ K∗(A)⊗K∗(B)
β−→ E∗(A,B)

ρ−→ TorZ
1 (K∗(A),K∗(B))→ 0.

Is B the class of all separable C∗-algebras?

25.7.6. [Guentner et al. 1997] Work out the details of equivariant E-theory and
compare them with the equivariant KK-theory of Section 20.
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higher Â-genus 24.3.3
higher signature 24.2
Hilbert module 13.1.1
Hilbert space over B 13.1.2
homogeneous element 14.1.1
homogeneous state 14.1.1
homology theory 21.1.1
homotopy (of extensions) 15.4
homotopy (of homomorphisms) 5.2.2
homotopy (of idempotents) 4.2.1
homotopy (of Kasparov modules) 17.2.2
homotopy axiom 21.1

idempotent 4.1.1
index map 8.3.2
index theorem 24.1
index theorem for families 24.1.3
induction homomorphism 20.5.4
inductive limit 3.3
injective resolution 23.5
internal tensor product 13.5.1, 14.4.2
intersection product 18.1, 20.3
irrational rotation algebra 10.11.6
isometry 4.6.1

K-amenable group 20.9.1
K-contractible 19.1
K-homology 16.3
K-nuclear C∗-algebra 20.10.2
K-theory mod p 23.15.7
K-theory with rational coefficients

23.15.6
Kasparov G-module 20.2.1
Kasparov module 17.1.1
Kasparov product 18.4.1
Kasparov’s Technical Theorem 12.4.2,

14.6.2, 20.1.5
KK-domination 23.10.6
KK-equivalence 19.1.1
Kleisli category 22.1
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