
.

......
Hilbert Spaces Without Countable AC

Bruce Blackadar, Ilijas Farah, and Asaf Karagila

August 28, 2023

Bruce Blackadar, Ilijas Farah, and Asaf Karagila Hilbert Spaces Without Countable AC



We are accustomed to assume the Axiom of Choice. But what if
we don’t? Things can become strange and counterintuitive, but
(arguably) more interesting.

We study Hilbert spaces and operators without any form of
Choice, especially Hilbert spaces whose dimension is “finite” in a
sense incompatible with even the Countable AC.
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.
Axiom of Choice (AC):
..

......

If {Xi : i ∈ I} is a collection of nonempty sets, there is a choice
function c : I → ∪iXi with c(i) ∈ Xi for all i .

Equivalently: if {Xi : i ∈ I} is a collection of nonempty sets, then∏
i∈I

Xi is nonempty. (Multiplicative Axiom)

.
Countable Axiom of Choice (CC):
..

......

If {Xn : n ∈ N} is a sequence of nonempty sets, there is a choice
function c : N → ∪nXn with c(n) ∈ Xn for all n.

There are many other versions of Choice: Dependent Choice, BPI,
. . .
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Without AC we cannot use many of the usual tools:

Zorn’s Lemma

Tikhonov’s Theorem

Hahn-Banach Theorem

Baire Category Theorem

which all require some form of Choice.

Without CC we even cannot prove

Sequential criteria for continuity and closure

A countable union of countable sets is countable

· · ·

But we can still make finitely many choices.
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Thus we must set aside almost everything we think we know about
Hilbert spaces, operators, and C*-algebras, and prove or reprove
everything from scratch.

Some things work identically with the same proofs

Some things are still true but require different proofs

Some things are no longer true.
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Dedekind-finite Sets

.
Definition:
..

......

A set X is Dedekind-finite if every injective function from X to X
is surjective. Otherwise X is Dedekind-infinite. A cardinal is
Dedekind-finite if it is the cardinal of a Dedekind-finite set.

Any finite set is Dedekind-finite. Any subset of a Dedekind-finite
set is Dedekind-finite.

DF = “infinite and Dedekind-finite.”

.
Proposition:
..

......

A set X is Dedekind-infinite if and only if it has a countably
infinite subset (a sequence of distinct elements).

Under CC, every infinite set is Dedekind-infinite, i.e. there are no
DF sets.
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If we have one DF cardinal κ, we have many: the sequence (κ− n)
is a strictly decreasing sequence of DF cardinals, contradicting the
Well-ordering Principle. If X is DF and Y is a proper subset of X ,
then |Y | < |X |. More bizarrely:

There is a set of DF cardinals order-isomorphic to R.

In some models of ZF, there are 2ℵ0 mutually incomparable DF
cardinals.

In some models of ZF, the collection of DF cardinals is not a set:
every set is an image of a DF set.
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Stronger Flavors

Notation: |X | is the cardinality of X .
P(X ) (power set of X ) is the set of all subsets of X .
Fin(X ) is the set of all finite subsets of X .

We have |X | ≤ |Fin(X )| ≤ |P(X )|.
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.
Definition:
..

......

Let X be a set.

(i) X is Cohen-finite if Fin(X ) is Dedekind-finite.

(ii) X is power Dedekind-finite if P(X ) is Dedekind-finite.

CF = “infinite and Cohen-finite.”
PF = “infinite and power Dedekind-finite.”

X PF ⇒ X CF ⇒ X DF. No reverse implications.
.
Proposition:
..

......

If X is an infinite set, then P(Fin(X )) (and hence P(P(X ))) is
Dedekind-infinite.
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X is PF if and only if X does not have a sequence of distinct
subsets, and is CF if and only if it does not have a sequence of
distinct finite subsets.

.
Theorem (of ZF!):
..

......

Let X be a set. If X has a sequence of distinct subsets, then X has
a sequence of pairwise disjoint nonempty subsets. (The converse is
trivial.)

.
Corollary:
..

......

Let X be an infinite set. Then X is PF if and only if X does not
have a sequence of pairwise disjoint nonempty subsets. X is CF if
and only if it does not have a sequence of pairwise disjoint
nonempty finite subsets.
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Russell Socks

.
Definition:
..

......

A set X is a Russell set, or a set of Russell socks, if it is DF and is
a union of a sequence of pairwise disjoint two-element sets.

The two-element subsets are “pairs of socks” where there is no
way to globally choose a left or right sock out of each pair.

A Russell set is DF but not CF.

If you have a set of Russell socks and add another pair of socks,
you have more socks (strictly larger cardinality), but the same
number (ℵ0) of pairs of socks.
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Amorphous Sets

.
Definition:
..

......

A set X is amorphous if X is infinite but cannot be written as a
disjoint union of two infinite subsets, i.e. every subset of X is
either finite or cofinite.

An amorphous set is PF. Any infinite subset of an amorphous set is
amorphous.

.
Proposition:
..
......An amorphous set cannot be totally ordered.
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Rigid Sets

.
Definition:
..

......

An infinite set X is rigid if every permutation of X moves only
finitely many elements of X . X is strongly rigid if, whenever X is
partitioned into nonempty subsets, all but finitely many of the
subsets are singletons.

strongly rigid ⇒ rigid ⇒ DF and strongly rigid ⇒ PF. Any subset
of a [strongly] rigid set is [strongly] rigid.
strongly rigid does not imply amorphous (or conversely).

.
Definition:
..
......A set X is strongly amorphous if it is amorphous and strongly rigid.
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Existence and Models

Fraenkel (1922): There is a model of ZF + atoms with a strongly
amorphous set.

Cohen (1963): There is a model of ZF in which R has a CF subset.

More recent models have Russell sets, etc.

These models can be combined via transfer theorems to give a
single model of ZF containing all flavors of DF sets.
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Completeness

Without CC, the usual notion of completeness (Cauchy
completeness) for metric spaces is not appropriate. We instead use:

.
Definition:
..

......

A metric space (X , ρ) is σ-complete if, whenever (An) is a
decreasing sequence of closed subsets of X with diam(An) → 0,
∩nAn ̸= ∅ (it is necessarily a singleton).
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.
Theorem:
..

......

Let (X , ρ) be a metric space. The following are equivalent:

(i) (X , ρ) is σ-complete.

(ii) X is complete in the uniform structure from ρ.

(iii) (X , ρ) is absolutely closed: if ϕ is an isometry from (X , ρ) to
a metric space (Y , τ), then ϕ(X ) is closed.

These imply

(iv) (X , ρ) is Cauchy complete.

If the CC is assumed, (i)–(iv) are all equivalent.
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Hilbert Spaces

.
Definition:
..

......

A Hilbert space is a complex inner product space which is
σ-complete.

Most important property:
.
Theorem [Closest Vector Property]:
..

......

Let H be a Hilbert space and C a nonempty closed convex subset
of H. For any ξ ∈ H, there is a unique η ∈ C such that

∥ξ − η∥ = ρ(ξ, η) = ρ(ξ,C ) = inf
ζ∈C

∥ξ − ζ∥ = min
ζ∈C

∥ξ − ζ∥ .

The usual proof uses Cauchy sequences, with a lemma from the
Parallelogram Law.
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There is an alternate proof not using CC:

Proof: Let r = ρ(ξ,C ). For each n ∈ N let An be the intersection
of C with the closed ball of radius r + 1

n around ξ. Then each An

is a nonempty closed convex set in H, with An+1 ⊆ An, and
ρ(ξ,An) = ρ(ξ,C ). Then diam(An) → 0 as n → ∞. Thus by
σ-completeness ∩nAn = {η} for some η ∈ C . Clearly ∥ξ − η∥ = r
and η is the unique vector in C with this property.
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Other crucial properties of Hilbert spaces follow in the usual way:

1. If H is a Hilbert space and Y a closed subspace, then Y has an
orthogonal complement, and there is an orthogonal projection PY
from H onto Y.

2. [Riesz Representation Theorem] If ϕ is a bounded linear
functional on a Hilbert space H, then there is a unique vector
η ∈ H with ϕ(ξ) = ⟨ξ, η⟩ for all ξ ∈ H.

3. Every bounded operator on a Hilbert space has an adjoint.

All these can fail if the inner product space is only Cauchy
complete.
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Orthonormal Bases

Under AC, we have the standard result:
.
Theorem:
..

......

Let H be a Hilbert space. Then

(i) H has an orthonormal basis.

(ii) Every orthonormal set in H can be expanded to an
orthonormal basis.

(iii) Any two orthonormal bases for H have the same cardinality
(orthogonal dimension is well defined).

No Choice is needed to prove this for separable Hilbert spaces
(Gram-Schmidt).
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All parts of this theorem can fail if the AC is not assumed. Thus
Hilbert spaces are much more varied and interesting without
Choice. There are even infinite-dimensional Hilbert spaces which
are so different that every bounded operator between them has
finite rank.

The Hilbert spaces with orthonormal bases can be nicely described
as ℓ2 spaces.
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.
Definition:
..

......

Let X be a set. Then

ℓ2(X ) =

{
η : X → C :

∑
x∈X

|η(x)|2 < ∞

}
.

Here “sum over X” means “integral with respect to counting
measure on X .” Thus the sum of a nonnegative function over X is
the supremum of the sums over finite subsets of X .

There is a natural inner product on ℓ2(X ) defined in the obvious
way.
.
Proposition:
..

......If X is a set, then ℓ2(X ) is σ-complete, hence a Hilbert space.
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There is a natural orthonormal basis {ξx : x ∈ X} for ℓ2(X ), where
ξx is the characteristic (indicator) function of {x}.

Conversely, we have:
.
Proposition:
..

......

Let H be a Hilbert space with an orthonormal basis {ηx : x ∈ X}
indexed by a set X . then ηx 7→ ξx extends to an isometric
isomorphism H ∼= ℓ2(X ).

Thus the spaces ℓ2(X ) are universal models for Hilbert spaces with
orthonormal bases.
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We will be particularly interested in ℓ2(X ) for DF X . There are
some surprises.

Note first that if X is DF, then ℓ2(X ) is not separable (the basis
vectors cannot all be closely approximated by a countable set).

In the non-Choice setting, a nonseparable Hilbert space is not
necessarily “larger” or “smaller” than a separable one (just
“different”!)
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Russell Socks

The first interesting example is to take X to be a set of Russell
socks, X = ∪nXn where Xn has two elements, and X is DF.

Let Xn be the span of Xn in ℓ2(X ). The Xn are mutually
orthogonal two-dimensional subspaces, each with a distinguished
(unordered!) orthonormal basis.
For each n let ηn be the normalized sum of the two basis vectors in
Xn. Then the ηn are an orthonormal sequence in ℓ2(X ). Let Y be
the closed span of the ηn. Then Y ∼= ℓ2(N). Set Z = Y⊥.
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Thus ℓ2(X ) for DF X can contain an orthonormal sequence! Even
more is true:

ℓ2(X ⊔ N) ∼= ℓ2(N)⊕ ℓ2(X ) ∼= ℓ2(N)⊕ Y ⊕ Z
∼= ℓ2(N)⊕ ℓ2(N)⊕Z ∼= ℓ2(N)⊕Z ∼= Y ⊕ Z ∼= ℓ2(X )

So ℓ2(X ) has an orthonormal basis indexed by the DF set X , and
another orthonormal basis indexed by the Dedekind-infinite set
X ⊔ N. Thus orthogonal dimension is not well defined in general.
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The subspaces Y and Z can be viewed another way. There is a
permutation of X which interchanges the two socks in each pair,
which defines a self-adjoint unitary operator U on ℓ2(X ). Y and Z
are the +1 and −1 eigenspaces of U.

Z is spanned by the differences of the basis vectors in each Xn.
Thus Z is the closed span of a sequence of one-dimensional
subspaces of ℓ2(X ). However, the difference of the basis vectors in
Xn is only well defined up to sign, and a global choice of sign is
not possible. Thus an orthonormal sequence cannot be made from
these vectors. (Z is in fact not separable.)

Bruce Blackadar, Ilijas Farah, and Asaf Karagila Hilbert Spaces Without Countable AC



The subspaces Y and Z can be viewed another way. There is a
permutation of X which interchanges the two socks in each pair,
which defines a self-adjoint unitary operator U on ℓ2(X ). Y and Z
are the +1 and −1 eigenspaces of U.

Z is spanned by the differences of the basis vectors in each Xn.
Thus Z is the closed span of a sequence of one-dimensional
subspaces of ℓ2(X ). However, the difference of the basis vectors in
Xn is only well defined up to sign, and a global choice of sign is
not possible. Thus an orthonormal sequence cannot be made from
these vectors. (Z is in fact not separable.)

Bruce Blackadar, Ilijas Farah, and Asaf Karagila Hilbert Spaces Without Countable AC



It seems plausible that Z does not have an orthonormal basis.
(This is claimed by N. Brunner et al., but we cannot follow the
alleged proof.)

But using a set of “super Russell socks,” with analogous U, Y, Z,
we can show:
.
Theorem:
..

......

There is (in a model of ZF) an amorphous set X , and an
infinite-dimensional closed subspace Z of ℓ2(X ), such that every
orthonormal set in Z is finite. In particular, Z has no orthonormal
basis.

This Z is of course a closed subspace of a Hilbert space with an
orthonormal basis. We do not know whether every Hilbert space is
isomorphic to a subspace of a Hilbert space with an orthonormal
basis.
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CF Sets

If X is CF, the Hilbert space ℓ2(X ) has some curious properties:
.
Proposition:
..

......

Let X be a CF set. Then

(i) Every vector in ℓ2(X ) has finite support (i.e. the orthonormal
basis {ξx : x ∈ X} is a Hamel basis).

(ii) Every sequence of vectors in ℓ2(X ) has finite common support.

(iii) ℓ2(X ) does not contain an orthonormal sequence.

As a result, the closed unit ball of ℓ2(X ) is a σ-complete metric
space which is sequentially compact but not compact (not totally
bounded).
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Here is an interesting example. Let X be a CF set which is not PF,
and write X = ⊔nXn with nonempty Xn. Let T ∈ B(ℓ2(X )) be 1

n1
on the closed span Xn of Xn. Then T is a bijection, but T−1 is
not bounded. T and T−1 are self-adjoint.

This gives a simple counterexample to the Open Mapping Theorem
and Closed Graph Theorem. Truncations of T−1 give a
counterexample to the Uniform Boundedness Theorem.

The usual proofs of these theorems use some version of the Baire
Category Theorem. The theorems are actually essentially
equivalent to CC.
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Bounded Operators

If H is a Hilbert space, many basic properties of B(H) persist
without AC: support projections, polar decomposition, continuous
and Borel functional calculus of self-adjoint elements, . . .

But there can be dramatically different behavior for H = ℓ2(X ), X
sufficiently DF:
.
Theorem:
..

......

Let X be CF, and T ∈ B(ℓ2(X )). Then X decomposes into finite
subsets {Xi : i ∈ I} such that the span Xi of Xi is invariant under
T for each i .

In particular, T has many finite-dimensional invariant subspaces.
.
Corollary:
..

......If X is CF, then B(ℓ2(X )) is stably finite.
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.
Corollary:
..

......

Let X be a strongly amorphous set. Then every bounded operator
on X is a finite-rank perturbation of a scalar.

This has an interesting reformulation:
.
Corollary:
..

......

Let X be a strongly amorphous set. Then H = ℓ2(X ) is
infinite-dimensional, and every closed subspace of H has either
finite dimension or finite codimension.

Thus H is a “hereditarily indecomposable Hilbert space.” We
suspect “closed” can be eliminated from the statement.
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Spectrum

The spectrum of an operator (or element of any unital Banach
algebra) has the usual properties.
.
Theorem:
..

......

If X is PF and T ∈ B(ℓ2(X )), then σ(T ) is finite, and every
λ ∈ σ(T ) is an eigenvalue.

On the other hand, if X is not power Dedekind-finite, then every
separable compact subset of C occurs as the spectrum of a normal
operator on ℓ2(X ).
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Compact Operators

The following definition of compact operator seems to be the best
one (with or without AC):
.
Definition:
..

......

An operator on a Hilbert space is compact if the image of every
bounded set is totally bounded. Write K(H) for the set of
compact operators on the Hilbert space H.

.
Proposition:
..

......

Let H be a Hilbert space. Then K(H) is a closed two-sided ideal
in B(H), and is the closure of the ideal of finite-rank operators.
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.
Proposition:
..

......

Let X be a CF set. Then every compact operator on ℓ2(X ) has
finite rank.

The Calkin Algebra

If H is an infinite-dimensional Hilbert space, we define the Calkin
algebra Q(H) to be the quotient C*-algebra B(H)/K(H).
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If H is infinite-dimensional and separable, then Q(H) is simple and
purely infinite. But for other Hilbert spaces it can be very different.
.
Theorem:
..

......

If H is an infinite-dimensional Hilbert space, then the following are
equivalent:

(i) B(H) is finite.

(ii) B(H) is stably finite.

(iii) Q(H) is finite.

(iv) Q(H) is stably finite.

(v) H does not contain an orthonormal sequence.

If H = ℓ2(X ) for a set X , these are equivalent to

(vi) X is CF.
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If X is strongly amorphous, then Q(ℓ2(X )) ∼= C.

If Y = X × {0, . . . , n − 1}, then Q(ℓ2(Y )) ∼= Mn.

Q(H) is not necessarily simple: if X is strongly amorphous, and
H = ℓ2(X )⊕ ℓ2(N) ∼= ℓ2(X ⊔ N), then
Q(H) ∼= Q(ℓ2(X ))⊕Q(ℓ2(N) ∼= C⊕Q(ℓ2(N)).

We have an example of an X such that Q(ℓ2(X )) is commutative
and nonseparable (isomorphic to ℓ∞(Y )/c0(Y ) for an infinite set
Y ).
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We suspect Q(H) is rarely if ever separable if infinite-dimensional.

We also suspect Q(H) is rarely simple if H is nonseparable. The
ideal structure of Q(ℓ2(X )) should be related to the poset of
infinite cardinals infinitely dominated by |X |.

If H has no orthonormal basis, we have no clear idea of the
structure of Q(H).
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New Cardinal Flavors and Relations

.
Definition:
..

......

Let H be an infinite-dimensional Hilbert space.

(i) H is HDF if it is not isometric to a proper subspace of itself.

(ii) H is HCF if it does not have a sequence of mutually
orthogonal nonzero finite-dimensional subspaces.

(iii) H is HPF if it does not have a sequence of mutually
orthogonal nonzero (closed) subspaces.

(iv) H is Hilbert-amorphous if every closed subspace has either
finite dimension or finite codimension.

Hilbert-amorphous ⇒ HPF ⇒ HCF ⇒ HDF. The implications are
not reversible.

H is HDF if and only if it does not contain an orthonormal
sequence.
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Corresponding notions for sets: if X is a set, then X is HDF (etc.)
if ℓ2(X ) is HDF (etc.)

We have X HDF ⇔ X CF.

We have X HCF ⇒ X CF, X HPF ⇒ X PF, X Hilbert-amorphous
⇒ X amorphous. X strongly amorphous ⇒ X Hilbert-amorphous.

The converses seem doubtful. Thus HCF, HPF, and
Hilbert-amorphous are potentially new flavors of
Dedekind-finiteness not considered by set theorists.
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We also have a potentially new preorder and equivalence relation
on cardinals:
.
Definition:
..

......

Let X and Y be sets. Then |Y | ⪯ |X | if ℓ2(X ) contains a subspace
isometric to ℓ2(Y ) (i.e. ℓ2(X ) contains an orthonormal set of
cardinality |Y |.
|X | ∼ |Y | if ℓ2(X ) ∼= ℓ2(Y ).

There is a Schröder-Bernstein Theorem: |X | ∼ |Y | if and only if
|X | ⪯ |Y | and |Y | ⪯ |X |.

The usual order ≤ is much stronger than ⪯: if X is a set of Russell
socks, then ℵ0 ⪯ |X |, and |X | ∼ |X ⊔ N|.
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Project: Compute the K -theory and nonstable K -theory of B(H)
and Q(H) for Hilbert spaces of the kind we have been considering.

The answer will depend on what model of ZF we are working in.
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C*-Algebras

We use the usual definition of C*-algebra, but require
σ-completeness. Many basic properties of C*-algebras continue to
hold.

Examples: (i) B(H) for any Hilbert space H.
(ii) C0(X ) for any locally compact Hausdorff space X .

Under AC, these examples are universal by the two
Gelfand-Naimark theorems.

Both Gelfand-Naimark theorems can fail without AC.
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Representability

.
Definition:
..

......

A C*-algebra A is representable if it is (isometrically) *-isomorphic
to a norm-closed *-subalgebra of B(H) for some Hilbert space H.

By the Gelfand-Naimark Theorem, every C*-algebra is
representable. The key property is existence of many states:

.
Definition:
..

......

A C*-algebra A has enough states if

∥x∥2 = sup{ϕ(x∗x) : ϕ ∈ S(A)}

for every x ∈ A.

The Hahn-Banach Theorem is needed to give enough states.
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.
Proposition:
..
......A C*-algebra is representable if and only if it has enough states.

Example: If the Axiom of Determinacy is assumed, the
commutative C*-algebra ℓ∞(N)/c0(N) has no states! (Thus in
particular is not representable.)

The Hahn-Banach Theorem can be proved for separable Banach
spaces without any Choice. Thus every separable C*-algebra is
representable, and is in fact representable on a separable Hilbert
space.
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Commutative C*-Algebras and Functional Calculus

Gelfand’s Theorem is dicier, even for separable commutative
C*-algebras: need enough pure states (maximal ideals) + more. In
the nonseparable case, ℓ∞(N)/c0(N) is a counterexample.

We have a proof in the separable case, but it is very roundabout:
using model theory, it can be shown that the statement does not
depend on the AC (i.e. if there is a ZFC proof, there is a ZF
proof). Since there is a ZFC proof, there is a ZF proof.
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