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Questions to be answered:

1. What is a C*-algebra?

2. What is a classification?

3. How do we classify C*-algebras?

4. Why do we care?



1. What is a C*-algebra?

Definition. A concrete C*-algebra (of operators) is a

norm-closed *-subalgebra of L(H), for a Hilbert space

H.

Definition. An (abstract) C*-algebra is a Banach

*-algebra satisfying the C*-axiom.

Banach algebra: (Complex) Banach space which is an

algebra over C, satisfying

‖xy‖ ≤ ‖x‖‖y‖

Involution: ∗ : A→ A, (x + y)∗ = x∗+y∗, (λx)∗ =

λ̄x∗, (xy)∗ = y∗x∗, (x∗)∗ = x

C*-axiom: ‖x∗x‖ = ‖x‖2

Theorem. (Gelfand-Naimark-Segal) Every (abstract)

C*-algebra is isometrically isomorphic to a concrete

C*-algebra of operators.



Examples of C*-Algebras

Mn, the n× n matrices over C (= L(Cn))

K, the compact operators on H

C0(X), X a locally compact Hausdorff space

C0(X,Mn) and C0(X,K) (typical homogeneous C*-

algebra)

{f ∈ C([0,1],M2) : f(1) diagonal} (typical subhomo-

geneous C*-algebra)

Type I C*-algebras: C*-algebras which locally “look

like” C*-algebras like these (assembled from these by

extensions, etc.)

Type I C*-algebras are “almost commutative.”

Opposite extreme: simple C*-algebras (no nontrivial

closed ideals)

General C*-algebras are “assembled” from simple C*-

algebras



Early History (pre-1970’s): C*-algebras closely tied

to operator theory on Hilbert spaces.

Mackey Philosophy: To understand a C*-algebra, must

understand its representation theory. (Possible only

with Type I C*-algebras)

Modern Philosophy: C*-algebras can be studied and

understood independent of their representation the-

ory. (Non-type-I C*-algebras can be understood!)

Noncommutative Topology: C*-algebras are noncom-

mutative generalizations of topological spaces, and

can be studied by topological methods.



Applications:

1. Mathematical physics

quantum mechanics

2. Representation theory of locally compact topolog-

ical groups

G 7→ C∗(G)

3. Singular spaces

dynamical systems

foliations

locally compact groupoids

· · ·

Space 7→ C*-algebra



Von Neumann Algebras

Definition. A von Neumann Algebra is a weakly

closed unital *-algebra of operators on a Hilbert space.

Commutant: If M ⊆ L(H),

M ′ = {x ∈ L(H) : xy = yx ∀y ∈M}

M ′′ = (M ′)′. M ⊆M ′′, (M ′′)′ = M ′.

Bicommutant Theorem. M is a von Neumann al-

gebra if and only if M = M ′′.

M is a factor if Z(M) = M ∩M ′ is C1.

Every von Neumann algebra is a “continuous (mea-

surable) direct sum” (direct integral) of factors.

The theory of von Neumann algebras is “noncommu-

tative measure theory.”



2. What is a classification?

A true classification consists of

(1) A ”list” of standard objects in the class

(2) An ”algorithm” for determining, for any given ob-

ject, which standard object it is isomorphic to.

Examples:

Real vector spaces

closed 2-manifolds

finite simple groups

Bernoulli shifts (entropy)

countable abelian torsion groups (Ulm invariants)

Non-examples: knots, closed 3-manifolds

finitely presented groups



A “classification” is a complete description in terms of

invariants or objects of a different type (e.g. a faithful

functor to a different category).

Examples: knots via fundamental group of comple-

ment

commutative C*-algebras:

Theorem. (Gelfand-Naimark) If A is a commuta-

tive C*-algebra, then there is a unique locally compact

Hausdorff space X such that A is isomorphic to C0(X).

X 7→ C0(X) is a contravariant category equivalence.

Classification theorems for C*-algebras are mostly “clas-

sifications” rather than true classifications.

They are nonetheless very useful in proving isomor-

phism theorems, and also in giving the existence of

examples.



A partial classification is an incomplete description in

terms of invariants.

Invariant not complete (or shown to be complete)

Classification restricted to subclass satisfying techni-

cal conditions

Example: Spaces via (co)homological invariants



Classification of Stable Homogeneous

C*-Algebras

A C*-algebra is stable homogeneous if it arises as a
locally trivial bundle over a locally compact Hausdorff
space X, with fibers isomorphic to K.

Can also define nonstable homogeneous C*-algebras.
Finite homogeneous C*-algebras: locally trivial Mn-
bundles.

Canonical example: C0(X,K), C0(X,Mn)

Not every homogeneous C*-algebra is globally of this
form: there is a global twist in general.

The transition functions from local trivializations de-
fine a 2-cocycle on X with values in the sheaf U of
germs of continuous functions from X to T.

The class of this cocycle in H2(X,U) ∼= H3(X,Z) is
the Dixmier-Douady invariant of A.

Theorem. (Dixmier-Douady) The Dixmier-Douady
invariant is a complete isomorphism invariant for sta-
ble homogeneous C*-algebras. Every element of the
group H3(X,Z) occurs.



The classification of nonstable homogeneous C*-algebras

is more complicated, but can be done using topolog-

ical invariants.



Type Classification of Factors

Definition A projection in a C*-algebra is an element
p with p = p∗ = p2.

Projections in a concrete C*-algebra are (orthogonal)
projection operators.

Von Neumann algebras contain “many” projections
(spectral theorem)

Partial order: p ≤ q if pq = qp = p. p is a subprojection
of q.

Definition. Projections p, q ∈ A are equivalent (in A)
if ∃u ∈ A with u∗u = p, uu∗ = q (partial isometry from
p to q). Write p ∼ q.

If p ∼ q′ ≤ q, p is subordinate to q. Write p - q.

Definition. A projection is finite if it is not equivalent
to a proper subprojection.

A is finite if 1A is finite.

A factor may be finite (e.g. Mn) or infinite (e.g. L(H),
H infinite-dimensional)



A factor is semifinite if it contains nonzero finite pro-

jections.

A factor is purely infinite, or Type III, if every nonzero

projection is infinite.

A factor is discrete, or Type I, if it contains minimal

nonzero projections.

A Type I factor is isomorphic to L(H) for some H.

L(H) is Type In if dim(H) = n.

A nondiscrete factor is continuous. A factor is Type

II if it is semifinite and continuous.

Type II1: finite and continuous

Type II∞: infinite, semifinite, continuous

Type II1, Type II∞, and Type III factors exist (e.g.

constructed from groups acting on measure spaces).

There are uncountably many mutually nonisomorphic

examples of each type on a separable Hilbert space.



Alternate description of type classification via dimen-

sion functions and traces.

Definition. A dimension function on a C*-algebra A

is a function D : Proj(A) → [0,∞] such that D(p) =

D(q) if p ∼ q and D(p + q) = D(p) + D(q) if p ⊥ q

(pq = 0).

It follows that p - q ⇒ D(p) ≤ D(q).

Theorem. (Murray-von Neumann) Every factor

M (on a separable Hilbert space) has a dimension

function D, unique up to normalization, and p - q

⇔ D(p) ≤ D(q). The range of D is

{0,1, . . . , n} if M is Type In

[0,1] if M is Type II1

[0,∞] if M is Type II∞

{0,∞} if M is Type III.



Traces

Definition. A trace (tracial state) on a C*-algebra A

is a positive linear functional τ of norm 1 such that

τ(xy) = τ(yx) for all x, y ∈ A.

Example: Mn has a unique trace, the “usual” one

scaled so that τ(1) = 1.

A trace restricted to projections gives a dimension

function. Conversely:

Theorem. (Murray-von Neumann) The dimension

function on a finite factor comes from a trace, i.e.

a finite factor has a unique trace, which determines

comparability of projections.

A Type I∞ or Type II∞ factor also has a “semifinite

trace” (unbounded, not everywhere defined).



Classification of Injective Factors

Definition. A factor M on a separable Hilbert space

is approximately finite dimensional (afd) (or hyperfi-

nite) if any finite subset of M can be closely approx-

imated in the weak topology by elements lying in a

finite-dimensional C*-subalgebra (direct sum of ma-

trix algebras.)

Theorem. (Murray-von Neumann) All hyperfinite

II1 factors are isomorphic.

Powers 1967: There are uncountably many mutually

nonisomorphic afd factors of Type III.

Invariant is a number λ ∈ [0,1].

Tomita-Takesaki: Every von Neumann algebra has

a “canonical” one-parameter group of automorphisms

(σt) with (unbounded) positive generator ∆ (modular

operator)

Powers’ invariant λ can be interpreted using the spec-

trum of ∆ and {t : σt is inner }.



Can use this invariant to divide Type III factors into

Type IIIλ, 0 ≤ λ ≤ 1.

Theorem. (Connes) (i) There is a unique afd factor

of Type II∞.

(ii) The Powers factor is the unique afd factor of Type

IIIλ for 0 < λ < 1.

(iii) There are uncountably many afd factors of Type

III0, “classified” by ergodic flows (Krieger).

There is also a unique afd factor of Type III1 (Haagerup).

Connes also proved that the afd factors are precisely

the injective factors (range of a conditional expecta-

tion from L(H).)

This result makes it much easier to identify when a

factor is afd.

The afd factors are also the amenable factors.



Standard Operations on C*-Algebras:

extensions

Tensor product

Crossed product

Universal C*-algebras given by generators and rela-

tions

Inductive limit:

A1
φ12−→ A2

φ23−→ · · · −→ A

A is denoted lim→An or lim→(An, φm,n).

Example: Let φn,n+1 : Mn → Mn+1 be defined by

φn,n+1(a) =

[
a 0
0 0

]
Then lim→(Mn, φn,n+1) ∼= K.



Example: Let An = M2n, φn,n+1(a) = diag(a, a).

lim→(An, φn,n+1) is called the UHF algebra of type

2∞, denoted M2∞. (Also called the CAR algebra.)

Can also do for An = M3n, φn,n+1(a) = diag(a, a, a).

lim→(M3n, φn,n+1) = M3∞.

Question: Are M2∞ and M3∞ isomorphic? If not,

how do we distinguish them?

Idea: Use traces.

Since Mn has a unique trace, it follows that M2∞ and

M3∞ also have unique traces.

Invariant: The set of values the trace takes on pro-

jections.

For Mn, get
{
k
n : 0 ≤ k ≤ n

}
.

For M2∞, get the dyadic rationals in [0,1].

For M3∞, get the triadic rationals in [0,1].



More generally, let (k1, k2, . . . ) be a sequence of inte-

gers ≥ 2. Set m0 = 1, mn =
∏n
i=1 ki.

Set An = Mmn, φn,n+1(a) = diag(a, . . . , a) (kn+1 times).

Let A = lim→(An, φm,n). A is a general UHF algebra.

Invariant is described by the formal infinite product∏∞
i=1 ki. This is a generalized integer q = 2r23r35r5 · · · ,

where infinitely many nonzero exponents and infinite

exponents are allowed.

The range of the trace on projections is{
a

b
: 0 ≤ a ≤ b, b “divides” q

}

Theorem. (Glimm) Two UHF algebras with the

same invariant are isomorphic. So the UHF algebras

are (truly) classified by the generalized integers.

We may write Mq for the UHF algebra of type q.

The Mq are separable, simple, unital C*-algebras. There

are uncountably many distinct ones.



AF Algebras

Definition. An AF algebra is an inductive limit of a

system of finite-dimensional C*-algebras.

Examples: K

UHF algebras

C0(X), X zero-dimensional (e.g. the Cantor set)

AF algebras are “zero-dimensional” C*-algebras, and

are a C*-analog of afd von Neumann algebras.

Except for bookkeeping complications, general AF al-

gebras behave like UHF algebras. But invariant is

clumsy to phrase in terms of traces.

Problem: Not enough traces in general to distinguish

equivalence classes of projections.



Alternate approach: dimension group (K0-group) of

A

elements: formal differences of equivalence classes of

projections in matrix algebras over A

positive cone: equivalence classes of projections in

matrix algebras over A

scale: equivalence classes of projections in A, or class

of 1A

K0(A) is thus a scaled ordered group (scaled partially

ordered abelian group).

Examples: (1) K0(Mn) = (Z,Z+, {0,1, . . . , n}), or

(Z,Z+, n)

(2) K0(Mq) = (Z(q),Z(q)+,1), where

Z(q) =
{
a

b
∈ Q : b “divides” q

}

(These are precisely the subgroups of Q containing Z.)



Theorem. (Elliott) The dimension group is a com-

plete isomorphism invariant for AF algebras.

Theorem. (Effros-Handelman-Shen) An ordered

group G is a dimension group if and only if it has the

following properties:

G is countable

G is unperforated, i.e. nx ≥ 0 for n > 0 ⇒ x ≥ 0

G has the Riesz interpolation property, i.e. x1, x2 ≤
y1, y2 ⇒ ∃z with x1, x2 ≤ z ≤ y1, y2.

This gives a “classification” rather than a true clas-

sification, since the set of dimension groups is enor-

mously complicated, even the simple dimension groups.

For example, even the countable subgroups of R are

“unclassifiable” as ordered groups.

These theorems have proved to be very powerful as

existence and uniqueness theorems.



Outline of Proof of Elliott’s Theorem

A finite-dimensional C*-algebra is a direct sum of ma-

trix algebras

Mk1
⊕Mk2

⊕ · · · ⊕Mkr

so its dimension group is (Zr,Zr+, (k1, . . . , kr)).

Theorem. (Existence) If A and B are finite-dimensional

C*-algebras, and σ is a homomorphism (as scaled or-

dered groups) from K0(A) to K0(B), then there is a

*-homomorphism φ : A→ B implementing σ (φ∗ = σ).

Theorem. (Uniqueness) If A and B are finite-dim.

C*-algebras and φ, ψ : A → B are *-homomorphisms

with φ∗ = ψ∗ : K0(A) → K0(B), then φ and ψ are

unitarily equivalent (there is a unitary u ∈ B such that

ψ(a) = u∗φ(a)u ∀a ∈ A.)

The proofs of these theorems are simple and elemen-

tary linear algebra arguments.



General scheme: If A, B are C*-algebras and σ :

(K0(A),K0(A)+,ΣA) → (K0(B),K0(B)+,ΣB) is an

isomorphism, first show:

Intertwining Theorem. There are homomorphisms

αk : K0(Ank)→ K0(Bmk) and βk : K0(Bmk)→ K0(Ank+1)

making the following diagram commute:

K0(A1)→ · · · → K0(An2)→ · · · → K0(A)

K0(B1)→ · · · → K0(Bm1)→ · · · · · · → K0(B)

Now use the existence and uniqueness theorems to lift

this commutative diagram to get:

A1 → · · · → An2 → · · · → A

B1 → · · · → Bm1 → · · · · · · → B

inducing an isomorphism φ : A→ B.



E. Effros (≈ 1979) proposed making a similar study

of circle algebras (inductive limits of direct sums of

matrix algebras over C(T).)

No progress for about 10 years.

In 1989, I discovered pathological automorphisms of

order 2 of the CAR algebra.

Crossed Products by Z2

If α is an automorphism of A of order 2, embed A into

a larger C*-algebra C∗(A, u), where u = u∗ = u−1 and

uau = α(a).

A×α Z2 = {a+ bu : a, b ∈ A} ∼=
{[

a α(b)
b α(a)

]
: a, b ∈ A

}

A is a C*-subalgebra of A×α Z2.



There is a dual automorphism α̂ of A×α Z2, of order

2: α̂(a) = a, α̂(u) = −u.

(A×α Z2)×α̂ Z2
∼= M2(A) (Takai Duality).

The fixed-point algebra Aα = {a ∈ A : α(a) = a} is

stably isomorphic to A×αZ2 (under mild hypotheses.)

Question: If α is an automorphism of order 2 of the

CAR algebra A, are Aα and A×α Z2 AF algebras?

I discovered a simple circle algebra B and an auto-

morphism β of order 2 such that B is not AF because

K1(B) 6= 0 (the unitary group of B is not connected),

but A = B ×α Z2 is isomorphic to the CAR algebra.

Thus A×β̂ Z2 is not AF.

Moral: (1) Crossed products by Z2 can be pathologi-

cal.

(2) AF algebras are not so special and different from

other non-AF algebras such as circle algebras.



General Invariants

The scaled ordered K0-group is not a complete invari-

ant for all simple C*-algebras.

Shortcomings:

1. The unitary group of a simple C*-algebra is not

connected in general.

2. There might not be enough projections in the al-

gebra:

There may not be “small” projections

Projections need not distinguish traces

3. The algebra may be ”too large” (nonseparable) or

the internal structure of the algebra may be patholog-

ical.



Example. Embed Mkn(C(T)) into Mkn+1
(C(T)), where

kn+1 = (mn + 1)kn, by

[φn,n+1(f)](z) = diag(f(z), . . . , f(z), f(zn))

where zn runs over a dense set in T. The inductive

limit A is simple. If kn → ∞ rapidly (e.g. kn = n2),

A has an infinite-dimensional trace space. K0(A) and

K1(A) are dense subgroups of Q containing Z.

Example. (Jiang-Su) If p, q ∈ N, write Mpq as a

tensor product Mp ⊗Mq, and let

Dp,q = {f : [0,1]→ Mpq|f(0) ∈ Mp ⊗ 1, f(1) ∈ 1⊗Mq}

If p, q relatively prime, Dp,q is projectionless.

For suitable relatively prime pn, qn, there are embed-

dings φn,n+1 of Dpn,qn into Dpn+1,qn+1 so that the in-

ductive limit D is simple with unique trace. The con-

struction can be varied to give nonunique traces.



To overcome (3), restrict attention to separable C*-

algebras which are nuclear (approximately finite-dimensional

in an order-theoretic sense.)

All type I C*-algebras are nuclear

The class of nuclear C*-algebras is closed under most

standard operations (inductive limits, tensor products,

extensions, crossed products by amenable groups)

“Most” C*-algebras “arising naturally” are nuclear.

Nuclear C*-algebras are also precisely the amenable

C*-algebras, and are characterized by other natural

conditions (e.g. nice behavior under tensor products.)

Nuclear C*-algebras are the most natural C*-analog

of the afd (injective) von Neumann algebras.

A is nuclear ⇔ π(A)′′ is injective for every representa-

tion π of A.



To overcome (1), add K1 to the invariant. [Roughly,

K1(A) = (unitary group)/(connected component of

1).]

There is a natural ordering on

K∗(A) = K0(A)⊕K1(A)

yielding a scaled ordered K-group for A.

To overcome (2), add the trace space T (A) to the

invariant.

Definition. A state on a scaled ordered group (G,G+, u)

is an order-preserving homomorphism f : G → R with

f(u) = 1.

S(G) = set of states of G

There is a map χ : T (A)→ S(K0(A)).

χ is surjective if A is nuclear. (B.-Rørdam-Haagerup)



“Definition.” A C*-algebra has real rank zero if it

has “many” projections.

Examples: (1) AF algebras

(2) C0(X) has real rank zero ⇔ X is zero-dimensional.

Real rank zero is the noncommutative analog of zero-

dimensionality.

χ : T (A) → S(K0(A)) is a bijection if A has real rank

zero.

Elliott Invariant: (K∗(A), T (A), χ) (must be slightly

modified in the nonunital case.)

K∗(A) = K0(A)⊕K1(A) is a scaled (pre)ordered group.

Elliott’s Conjecture: The Elliott invariant is a com-

plete isomorphism invariant for infinite-dimensional sep-

arable simple nuclear C*-algebras.

The infinite-dimensional condition is necessary: the

Jiang-Su example has the same Elliott invariant as C.



Finiteness

Definition. A projection is finite if it is not equivalent

to a proper subprojection.

A is finite if 1A is finite.

A is stably finite if Mn(A) is finite for all n.

A is purely infinite if every nonzero positive element

dominates an infinite projection.

T (A) nonempty ⇒ A stably finite. Converse true in

nuclear case.

Question: Is every simple C*-algebra either stably

finite or purely infinite?

Classification theorems apply in these two cases.



Stably Finite Case

Program: study and classify (simple) inductive limits

of well-understood building blocks:

AF algebras: finite-dimensional building blocks

AH algebras: homogeneous building blocks

ASH algebras: subhomogeneous building blocks

Base spaces are restricted:

intervals

circles

graphs

two-dimensional CW complexes

three-dimensional CW complexes

bounded dimension (slow dimension growth)



Scheme of Proof

Modeled after AF case. First prove:

Intertwining Theorem. If A = limAn and B = limBn

with An, Bn building blocks, there is a compatible (ap-

proximate) intertwining

K∗(A1)→ · · · → K∗(An2)→ · · · → K∗(A)

K∗(B1)→ · · · → K∗(Bm1)→ · · · · · · → K∗(B)

T (A1)← · · · ← T (An2)← · · · ← T (A)

T (B1)← · · · ← T (Bm1)← · · · · · · ← T (B)

(Generally routine)



Then prove existence and uniqueness theorems to al-

low lifting to an (approximate) intertwining

A1 → · · · → An2 → · · · → A

B1 → · · · → Bm1 → · · · · · · → B

This is the major work.

New feature: Approximate homomorphisms on both

algebra and invariant level

Partially defined (on invariant)

Asymptotically commuting diagrams

Asymptotically multiplicative homomorphisms (on

algebras)



Current Status

Simple case: (Elliott, Gong, Li, Su, Thomsen, . . . )

Up to perforation, all possible values of the Elliott
invariant in unital stably finite case can be realized
within the classified class.

Real rank zero ASH algebras are “nearly finished”

Non-real rank zero case has farther to go.

Villadsen: Perforation can occur in non-rank-zero case.
Unknown in real rank zero case.

All possible values of the invariant can occur among
ASH algebras, but classification barely begun.

Some work also done on stably projectionless case.

Nonsimple Case: (Dadarlat, Eilers, Gong, Loring,
. . . )

Invariant must be expanded

Add primitive ideal space

Expand K∗ to K∗ (K-theory with coefficients)



Big Problem: Is every stably finite simple unital nu-

clear C*-algebra an ASH algebra?

Hard to get a handle on this.

Partial results: some unexpected examples turn out

to be ASH (irrational rotation algebras, etc.)

Theorem. (Q. Lin-Phillips) If α is a minimal diffeo-

morphism of a closed manifold X, then C(X) ×α Z is

ASH and in the classified class.

H. Lin has also expanded the classified class to include

many simple C*-algebras not obviously AF (“Tracially

AF”, etc.) Related work by Dadarlat.

E. Kirchberg and I have been studying generalized in-

ductive limits of finite-dimensional C*-algebras. One

of our results:

Theorem. Every separable simple quasidiagonal nu-

clear C*-algebra can be written as an inductive limit

of residually finite-dimensional nuclear C*-algebras.



Bivariant K-Theory

Kasparov developed a bivariant K-theory KK∗(·, ·)

KK∗(C, B) ∼= K∗(B)

KK∗(A,C) is “K-homology” of A (Brown-Douglas-

Fillmore Ext(A))

Elements of KK(A,B) are (homotopy classes of for-

mal differences of) “quasihomomorphisms” from A to

B (“Fredholm modules”)

Connes-Higson E(A,B) is the group of homotopy

classes of “asymptotic homomorphisms” from SA to

SB

E(A,B) = KK(A,B) if A nuclear.

Key feature: product (“composition”)

KK(A,B)×KK(B,C)→ KK(A,C)

Allows making KK (or E) into a category.

KK-Equivalence: isomorphism in this category.



Universal Coefficient Theorem

There is a natural homomorphism

γ : KK∗(A,B)→ Hom(K∗(A),K∗(B))

and a map from ker γ to Ext1
Z(K∗(A),K∗(B)).

A satisfies the Rosenberg-Schochet Universal Coeffi-

cient Theorem if the following sequence is exact for

all B:

0→ Ext1
Z(K∗(A),K∗(B))→ KK∗(A,B)

→ Hom(K∗(A),K∗(B))→ 0

The class of nuclear C*-algebras satisfying the UCT

is called the bootstrap class. It includes Type I C*-

algebras andis closed under extensions, inductive lim-

its, tensor products, and crossed products by Z.

The bootstrap class contains all known separable nu-

clear C*-algebras.

Question. Is every separable (simple) nuclear C*-

algebra in the bootstrap class?



Purely Infinite Case

Purely infinite ⇒ T (A) is empty and K0(A)+ = K0(A)

Purely infinite ⇒ real rank zero

So Elliott invariant just becomes (K0(A),K1(A)), a

pair of countable abelian groups with a distinguished

element of K0 (scale)

Every possible such pair occurs (Rørdam)

Examples: Cuntz algebras On, Cuntz-Krieger alge-

bras OA, many graph algebras (Kumjian-Pask et al.)

E. Kirchberg (and N. C. Phillips) proved the following

remarkable theorem:

Theorem. If A and B are separable simple purely

infinite C*-algebras which are KK-equivalent, then A

and B are stably isomorphic (A⊗ K ∼= B ⊗ K.)

Corollary. The Elliott invariant is a complete iso-

morphism invariant for purely infinite simple unital

C*-algebras in the bootstrap class for the Universal

Coefficient Theorem of K-theory.



Future Projects

1. Solve the UCT problem.

2. Decide whether every simple C*-algebra is either

stably finite or purely infinite.

3. Extend the classification to include Villadsen’s ex-

amples, and stably projectionless simple C*-algebras.

4. Give intrinsic conditions for a separable nuclear

C*-algebra to be in the classifiable class.

5. Extend the purely infinite classification to the non-

simple case.

6. Consider classes of nonnuclear C*-algebras, e.g.

exact C*-algebras.

Exact C*-algebras are a very natural class. They coin-

cide with the subnuclear C*-algebras. “Most” group

C*-algebras are exact. Many reduced free product

C*-algebras are exact.


