NUCLEARITY, QUASIDIAGONALITY, AND

GENERALIZED INDUCTIVE LIMITS

Bruce Blackadar

Joint work with Eberhard Kirchberg

Inductive Limits

Definition. An *inductive system* of C*-algebras (over N) is a sequence (A_n) of C^{*}-algebras and connecting *-homomorphisms $\phi_{n,n+1}: A_n \to A_{n+1}$ (not necessarily injective.)

If $(A_n, \phi_{n,n+1})$ is an inductive system, put a seminorm on the algebraic direct limit by

$$
\|\phi_m(a)\| = \inf_{n \ge m} \|\phi_{m,n}(a)\|
$$

The completion is called the *inductive limit*, denoted $\lim_{\rightarrow} (A_n, \phi_{m,n}).$

If each $\phi_{n,n+1}$ is injective, lim \rightarrow (A_n , $\phi_{m,n}$) is the completion of the "union" of the A_n .

Can embed $\lim_{n \to \infty} (A_n, \phi_{m,n})$ into $(\prod A_n)/(\oplus A_n)$:

$$
\phi_m(a)=\pi(\ldots,\phi_{m,n}(a),\dots)
$$

Closure of $\cup \phi_n(A_n)$ is $\lim_{n \to \infty} (A_n, \phi_{m,n}).$

Generalized Inductive Systems

Definition. A generalized inductive system of C^* algebras is a sequence (A_n) of C^{*}-algebras, with coherent maps $\phi_{m,n}: A_m \to A_n$ for $m < n$, such that for all k and all $x, y \in A_k$, $\lambda \in \mathbb{C}$, and all $\epsilon > 0$, there is an M such that, for all $M \leq m < n$,

(1)
$$
\|\phi_{m,n}(\phi_{k,m}(x) + \phi_{k,m}(y)) - (\phi_{k,n}(x) + \phi_{k,n}(y))\| < \epsilon
$$

$$
(2) \|\phi_{m,n}(\lambda \phi_{k,m}(x)) - \lambda \phi_{k,n}(x)\| < \epsilon
$$

$$
(3) \|\phi_{m,n}(\phi_{k,m}(x)^*) - \phi_{k,n}(x)^*\| < \epsilon
$$

$$
(4) \|\phi_{m,n}(\phi_{k,m}(x)\phi_{k,m}(y)) - \phi_{k,n}(x)\phi_{k,n}(y)\| < \epsilon
$$

(5)
$$
\sup_r \|\phi_{k,r}(x)\| < \infty
$$

A system satisfying (1) [resp. (4)] is called asymptotically additive [resp. asymptotically multiplicative]. A generalized inductive system in which all $\phi_{m,n}$ are linear is called a linear generalized inductive system; if all the $\phi_{m,n}$ also preserve adjoints, the system is called $*$ -linear. A system is contractive if all the connecting maps are contractions.

Generalized Inductive Limits

If $(A_n, \phi_{m,n})$ is a generalized inductive system, define $\phi_m:A_m\to (\prod A_n)/(\oplus A_n)$ by

$$
\phi_m(a)=\pi(\ldots,\phi_{m,n}(a),\ldots)
$$

Closure of $\cup \phi_n(A_n)$ is a C^{*}-algebra lim_→ $(A_n, \phi_{m,n})$.

Since lim \rightarrow ($A_n, \phi_{m,n}$) is a C*-subalgebra of ($\prod A_n) / (\oplus A_n)$,

If each A_n is commutative, lim $\rightarrow(A_n, \phi_{m,n})$ is commutative.

If each A_n is [stably] finite, $\lim_{n \to \infty} (A_n, \phi_{m,n})$ is [stably] finite.

If each A_n has a tracial state, and each $\phi_{m,n}$ is unital, then $\lim_{n \to \infty} (A_n, \phi_{m,n})$ has a tracial state.

MF Algebras

A separable C^* -algebra is an MF algebra if it is isomorphic to a generalized inductive limit lim $\rightarrow(A_n,\phi_{m,n})$ with each A_n finite-dimensional.

Theorem. Let A be a separable C^* -algebra. Then the following are equivalent:

- (i) A is an MF algebra
- (ii) A is isomorphic to $\lim_{x\to R} (A_n, \phi_{m,n})$ for a *-linear generalized inductive system of finite-dimensional C*-algebras
- (iii) A can be embedded as a C^* -subalgebra of the corona algebra $(\prod \mathbb{M}_{k_n})/(\oplus \mathbb{M}_{k_n})$ for some sequence $\langle k_n \rangle$
- (iv) There is a continuous field of C^* -algebras $\langle B(t) \rangle$ over $\mathbb{N} \cup \{\infty\}$ with $B(\infty) = A$ and $B(n)$ finitedimensional for $n < \infty$.
- (v) There is a continuous field of C^* -algebras $\langle B(t) \rangle$ over $\mathbb{N} \cup \{\infty\}$ with $B(\infty) = A$ and $B(n) = \mathbb{M}_{k_n}$ for $n < \infty$.

Properties of MF Algebras

Every C*-subalgebra of an MF algebra is MF.

Definition. A C*-algebra is residually finite-dimensional if it has a separating family of finite-dimensional representations.

Every residually finite-dimensional C*-algebra is an MF algebra.

In particular, every subhomogeneous C*-algebra is an MF algebra.

Not every MF algebra is residually finite-dimensional many AF algebras are not residually finite-dimensional.

Every separable C^* -algebra is a quotient of an MF algebra.

Any generalized inductive limit of MF algebras is an MF algebra.

Every MF algebra is stably finite.

It is hard to give an example of a stably finite separable C^{*}-algebra which is not MF. $C^*(G)$ for a group G which has Property T but is not maximally almost periodic is an example.

Quasidiagonality

If $S \subset \mathcal{L}(\mathcal{H})$, then S is a quasidiagonal set of operators if the operators in S are simultaneously blockdiagonalizable up to compacts.

Proposition. Let $S \subseteq \mathcal{L}(\mathcal{H})$. Then the following are equivalent:

- (i) S is a quasidiagonal set of operators.
- (ii) There is an increasing net (P_i) of finite-rank projections on $\mathcal H$, with $\bigvee_i P_i = I$ (i.e. $P_i \to I$ strongly), such that $\lim_i ||[P_i, S]|| = 0$ for all $S \in \mathcal{S}$.
- (iii) For every finite-rank projection $Q \in \mathcal{L}(\mathcal{H})$, $S_i, \ldots, S_n \in$ S, and $\epsilon > 0$, there is a finite-rank projection $P \in$ $\mathcal{L}(\mathcal{H})$ with $Q \leq P$ and $\|[P,S_i]\| < \epsilon$ for $1 \leq i \leq n$.

Condition (ii) or (iii) is frequently taken as the definition of a quasidiagonal set of operators.

Corollary. Let A be a concrete C^* -algebra of operators on H, containing $K(H)$. Then A is a quasidiagonal C*-algebra of operators if and only if there is an approximate unit for $K(H)$, consisting of projections, which is quasicentral for A.

Quasidiagonal C*-Algebras

Definition. A C^{*}-algebra is quasidiagonal if it has a faithful representation as a quasidiagonal algebra of operators.

If A is quasidiagonal, then any faithful representation of A not intersecting K is quasidiagonal (Voiculescu's Weyl-von Neumann Theorem)

Theorem. A C^* -algebra A is quasidiagonal if and only if, for every $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a representation π of A on a Hilbert space H and a finiterank projection $P \in \mathcal{L}(\mathcal{H})$ with $||P_{\pi}(x_i)P|| > ||x_i|| - \epsilon$ and $\|[P, \pi(x_j)]\| < \epsilon$ for $1 \le j \le n$.

Corollary. A separable C^* -algebra A is quasidiagonal if and only if there is a completely positive contraction $\phi\,:\,A\,\rightarrow\, \prod \mathbb{M}_{k_n},\,$ for some sequence $\langle k_n\rangle$, with $\pi\circ\phi\,$: $A \to (\prod \mathbb{M}_{k_n})/(\oplus \mathbb{M}_{k_n})$ a *-homomorphism.

Quasidiagonal Extensions

A C*-algebra A has a quasidiagonal extension by K if there is a quasidiagonal C^* -algebra of operators B, containing K, with $B/\mathbb{K} \cong A$.

A quasidiagonal C*-algebra has a split quasidiagonal extension by K .

Corollary. A C*-algebra is quasidiagonal if and only if it has a semisplit quasidiagonal extension by K .

Semisplit means completely positive cross section $A \rightarrow$ $B₁$

Proposition. A C*-algebra has a quasidiagonal extension by $\mathbb K$ if and only if it embeds in $(\prod \mathbb M_{k_n})/\oplus \mathbb M_{k_n})$ for some sequence $\langle k_n \rangle$.

Corollary. A C*-algebra is an MF algebra if and only if it has a quasidiagonal extension by K .

Nuclear C*-Algebras

There are many equivalent definitions. We will use:

Definition. A C^* -algebra A is *nuclear* if the identity map on A can be approximated in the point-norm topology by completely positive contractions through finite-dimensional C^* -algebras [matrix algebras], i.e. given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finitedimensional C^* -algebra [matrix algebra] B and completely positive contractions $\alpha : A \rightarrow B$ and $\beta : B \rightarrow A$ such that $||x_i - \beta \circ \alpha(x_i)|| < \epsilon$ for $1 \leq i \leq n$.

$$
A \qquad \stackrel{id}{\longrightarrow} \qquad A
$$

NF Algebras

Definition. A separable C^{*}-algebra is an NF algebra if it can be written as a generalized inductive limit $\lim_{\rightarrow} (A_n, \phi_{m,n})$, with each A_n finite-dimensional and $\phi_{m,n}$ a completely positive contraction.

Theorem. Let A be a separable C^* -algebra. The following are equivalent:

- (i) A is an NF algebra
- (ii) A is a nuclear MF algebra
- (iii) A is nuclear and can be embedded as a C^* -subalgebra of $(\prod \mathbb{M}_{k_n})/(\oplus \mathbb{M}_{k_n})$ for some sequence $\langle k_n \rangle$
- (iv) \overline{A} is nuclear and quasidiagonal
- (v) The identity map on A can be approximated in the point-norm topology by completely positive approximately multiplicative contractions through finite-dimensional C^* -algebras, i.e.

Given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finitedimensional C^* -algebra B and completely positive contractions $\alpha : A \rightarrow B$ and $\beta : B \rightarrow A$ such that $||x_i - \beta \circ$ $\alpha(x_i)$ $\leq \epsilon$ and $\|\alpha(x_ix_j) - \alpha(x_i)\alpha(x_j)\| < \epsilon$ for all i, j .

A id $\stackrel{\iota}{\longrightarrow}$ A

B

Thus the NF algebras form a very natural class of nuclear C*-algebras, the ones in which not only the complete order structure but also the multiplication can be approximately modeled in finite-dimensional C*-algebras.

A nuclear C*-subalgebra of an NF algebra is NF.

An inductive limit of NF algebras is NF.

If A is any nuclear C^* -algebra, then CA and SA are quasidiagonal (Voiculescu) and hence NF.

There is no known stably finite nuclear C*-algebra which is not NF.

Cannot assume β is approximately multiplicative unless A is an AF algebra.

If B is a finite-dimensional C^* -subalgebra of A, there is a conditional expectation from A to B .

More generally, if $\phi : B \to A$ is a complete order embedding, there is an idempotent completely positive contraction θ from A onto $\phi(B)$.

Nonstandard definition of AF algebras:

Definition. A C^{*}-algebra is an AF algebra if, for any $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finite-dimensional C^{*}-algebra B and completely positive contractions α : $A \to B$ and $\beta : B \to A$ such that $||x_i - \beta \circ \alpha(x_i)|| < \epsilon$ and β is an injective *-homomorphism.

It follows that the α 's are automatically asymptotically multiplicative in the sense of NF algebras.

Proposition. (Choi-Effros) Let A be a C*-algebra and $\theta: A \rightarrow A$ an idempotent completely positive contraction. Then the product $x \cdot y = \theta(xy)$ makes $\theta(A)$ into a C*-algebra B, and $\theta|_{C^*(\theta(A))}$ is a *-homomorphism.

Strong NF Algebras

Definition. A separable C^{*}-algebra is a *strong NF* algebra if it can be written as a generalized inductive limit lim $\rightarrow(A_n, \phi_{m,n})$, with each A_n finite-dimensional and $\phi_{m,n}$ a complete order embeddings.

There is then automatically an idempotent completely positive contraction $\gamma_{n+1,n}: A_{n+1} \to \phi_{n,n+1}(A_n)$ for each n, yielding an idempotent c.p. contraction $A \rightarrow$ $\phi_n(A_n)$. These maps are asymptotically multiplicative.

 $AF \Rightarrow$ Strong NF \Rightarrow NF

The implications cannot be reversed.

Every commutative C*-algebra is a strong NF algebra.

A unital c.p. contraction from \mathbb{C}^n to $\mathbb C$ is a convex combination of homomorphisms.

A (unital) complete order embedding from \mathbb{C}^n to \mathbb{C}^m gives a surjective affine map from Δ_{m-1} (or any subcomplex) to Δ_{n-1} .

A (unital) complete order embedding from \mathbb{C}^n to $C(X)$ corresponds to a "triangulation" of X , i.e. a choice of a partition of unity.

$$
(\lambda_1,\ldots,\lambda_n)\mapsto \sum_{k=1}^n \lambda_k f_k
$$

A strong NF system for $C(X)$ is equivalent to writing $X = \lim_{k \to \infty} X_n$, where the X_n are simplicial complexes with increasingly fine triangulations, and the connecting maps are piecewise linear.

Study of strong NF algebras is "noncommutative PLtopology."

Theorem. Let A be a separable C^* -algebra. The following are equivalent:

- (i) A is a strong NF algebra
- (ii) There is an increasing sequence (S_n) of finitedimensional $*$ -subspaces of A, each completely order isomorphic to a (finite-dimensional) C*-algebra, with dense union
- (iii) Given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finitedimensional C^* -algebra B , a complete order embedding ϕ of B into A, and elements $b_1, \ldots, b_n \in B$ with $||x_i - \phi(b_i)|| < \epsilon$ for $1 \leq i \leq n$
- (iv) The identity map on A can be approximated in the point-norm topology by idempotent completely positive finite-rank contractions from A to A , i.e. given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is an idempotent completely positive finite-rank contraction $\theta : A \to A$ with $||x_i - \theta(x_i)|| < \epsilon$ for $1 \leq i \leq n$.
- (v) The identity map on A can be approximated in the point-norm topology by completely positive approximately multiplicative retractive contractions

through finite-dimensional C*-algebras, i.e. given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finite-dimensional C^* -algebra B and completely positive contractions $\alpha: A \to B$ and $\beta: B \to A$ with $\alpha \circ \beta = id_B$ (β is then automatically a complete order embedding), such that $\|x_i-\beta\circ\alpha(x_i)\|<\epsilon$ and $\|\alpha(x_ix_j)-\alpha(x_i)\alpha(x_j)\|<\epsilon$ ϵ for all i, j .

- (vi) Same as (v) with the "approximately multiplicative" condition on α deleted.
- (vii) Given $x_1, \ldots, x_n \in A$ and $\epsilon > 0$, there is a finitedimensional C^* -algebra B and completely positive contractions $\alpha : A \rightarrow B$ and $\beta : B \rightarrow A$ with β a complete order embedding, such that $||x_i - \beta \circ$ $\alpha(x_i)$ $\vert < \epsilon$ and $\Vert \alpha(x_ix_j) - \alpha(x_i)\alpha(x_j)\Vert < \epsilon$ for all $i, j.$
- (viii) Same as (vii) with the "approximately multiplicative" condition on α deleted.
	- (ix) A is nuclear and inner quasidiagonal (has a separating family of quasidiagonal irreducible representations.)

Thus not every NF algebra is strong NF:

Examples. $C^*(S \oplus S^*)$, S the unilateral shift

 $SO₂$

Every primitive NF algebra is strong NF. In particular, every simple NF algebra is strong NF.

If A is NF and π is a faithful representation of infinite multiplicity, then $\pi(A) + \mathbb{K}$ is strong NF. So every NF algebra has a split extension by K which is strong NF. In particular, every NF algebra embeds in a strong NF algebra.

An inductive limit of strong NF algebras with *injective* connecting maps is strong NF.

A generalized inductive limit of strong NF algebras with complete order embeddings as connecting maps is strong NF.

A residually finite-dimensional nuclear C*-algebra is strong NF. Conversely:

Theorem. Every strong NF algebra is an (ordinary) inductive limit of residually finite-dimensional C*-algebras.

Roughly: if $A = \lim_{n \to \infty} (A_n, \phi_{m,n})$ is a strong NF algebra, then $C^*(\phi_m(A_m))$ is residually finite-dimensional. But not obviously nuclear.

Instead, for each m inductively for $n \geq m$ define $C_{m,n} \subseteq$ A_n by $C_{m,m} = A_m$, $C_{m,n+1} = C^*(\phi_{n,n+1}(C_{m,n}))$, and $C_m = [\cup \phi_n(C_{m,n})]^- \subset A$.

 $C_m = \lim_{\rightarrow} (C_{m,n}, \phi_{m,n})$, so C_m is a strong NF algebra and hence nuclear.

The map $\gamma_n : A \to A_n$ is a *-homomorphism from C_m onto $C_{m,n}$ for each n, and these separate points, so C_m is residually finite-dimensional. $A = [\cup C_m]^-$.

Open Questions

1. Is every stably finite nuclear C^* -algebra an NF algebra?

2. Can every (strong) NF algebra be embedded in an AF algebra?

(Partial results by Dadarlat)

3. Is there an effective way to compute the K -theory and trace space of a (strong) NF algebra?

"Noncommutative Cech cohomology" ˇ

4. Universal Coefficient Theorem?

Proposition. If every residually finite nuclear C^{*}algebra satisfies the UCT (is in the bootstrap class), then every nuclear C^* -algebra is in the bootstrap class.

If A is nuclear, then $S^2A + \mathbb{K}$ is strong NF and is an inductive limit of residually finite-dimensional C* algebras C_n . A satisfies the UCT if all the C_n do.