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Inductive Limits

Definition. An inductive system of C*-algebras (over

N) is a sequence (An) of C*-algebras and connecting

*-homomorphisms φn,n+1 : An → An+1 (not necessar-

ily injective.)

If (An, φn,n+1) is an inductive system, put a seminorm

on the algebraic direct limit by

‖φm(a)‖ = inf
n≥m

‖φm,n(a)‖

The completion is called the inductive limit, denoted

lim→(An, φm,n).

If each φn,n+1 is injective, lim→(An, φm,n) is the com-

pletion of the “union” of the An.

Can embed lim→(An, φm,n) into (
∏
An)/(⊕An):

φm(a) = π(. . . , φm,n(a), . . . )

Closure of ∪φn(An) is lim→(An, φm,n).



Generalized Inductive Systems

Definition. A generalized inductive system of C*-
algebras is a sequence (An) of C*-algebras, with co-
herent maps φm,n : Am → An for m < n, such that for
all k and all x, y ∈ Ak, λ ∈ C, and all ε > 0, there is an
M such that, for all M ≤ m < n,

(1) ‖φm,n(φk,m(x) +φk,m(y))− (φk,n(x) +φk,n(y))‖ < ε

(2) ‖φm,n(λφk,m(x))− λφk,n(x)‖ < ε

(3) ‖φm,n(φk,m(x)∗)− φk,n(x)∗‖ < ε

(4) ‖φm,n(φk,m(x)φk,m(y))− φk,n(x)φk,n(y)‖ < ε

(5) supr ‖φk,r(x)‖ <∞

A system satisfying (1) [resp. (4)] is called asymptot-
ically additive [resp. asymptotically multiplicative]. A
generalized inductive system in which all φm,n are lin-
ear is called a linear generalized inductive system; if
all the φm,n also preserve adjoints, the system is called
*-linear. A system is contractive if all the connecting
maps are contractions.



Generalized Inductive Limits

If (An, φm,n) is a generalized inductive system, define

φm : Am → (
∏
An)/(⊕An) by

φm(a) = π(. . . , φm,n(a), . . . )

Closure of ∪φn(An) is a C*-algebra lim→(An, φm,n).

Since lim→(An, φm,n) is a C*-subalgebra of (
∏
An)/(⊕An),

If each An is commutative, lim→(An, φm,n) is commu-

tative.

If each An is [stably] finite, lim→(An, φm,n) is [stably]

finite.

If each An has a tracial state, and each φm,n is unital,

then lim→(An, φm,n) has a tracial state.



MF Algebras

A separable C*-algebra is an MF algebra if it is isomor-
phic to a generalized inductive limit lim→(An, φm,n)
with each An finite-dimensional.

Theorem. Let A be a separable C*-algebra. Then
the following are equivalent:

(i) A is an MF algebra

(ii) A is isomorphic to lim→(An, φm,n) for a *-linear
generalized inductive system of finite-dimensional
C*-algebras

(iii) A can be embedded as a C*-subalgebra of the
corona algebra (

∏
Mkn)/(⊕Mkn) for some sequence

〈kn〉

(iv) There is a continuous field of C*-algebras 〈B(t)〉
over N ∪ {∞} with B(∞) = A and B(n) finite-
dimensional for n <∞.

(v) There is a continuous field of C*-algebras 〈B(t)〉
over N ∪ {∞} with B(∞) = A and B(n) = Mkn for
n <∞.



Properties of MF Algebras

Every C*-subalgebra of an MF algebra is MF.

Definition. A C*-algebra is residually finite-dimensional
if it has a separating family of finite-dimensional rep-
resentations.

Every residually finite-dimensional C*-algebra is an
MF algebra.

In particular, every subhomogeneous C*-algebra is an
MF algebra.

Not every MF algebra is residually finite-dimensional -
many AF algebras are not residually finite-dimensional.

Every separable C*-algebra is a quotient of an MF
algebra.

Any generalized inductive limit of MF algebras is an
MF algebra.

Every MF algebra is stably finite.

It is hard to give an example of a stably finite separable
C*-algebra which is not MF. C∗(G) for a group G

which has Property T but is not maximally almost
periodic is an example.



Quasidiagonality

If S ⊆ L(H), then S is a quasidiagonal set of oper-
ators if the operators in S are simultaneously block-
diagonalizable up to compacts.

Proposition. Let S ⊆ L(H). Then the following are
equivalent:

(i) S is a quasidiagonal set of operators.

(ii) There is an increasing net (Pi) of finite-rank pro-
jections on H, with

∨
i Pi = I (i.e. Pi → I strongly),

such that limi ‖[Pi, S]‖ = 0 for all S ∈ S.

(iii) For every finite-rank projection Q ∈ L(H), Si, . . . , Sn ∈
S, and ε > 0, there is a finite-rank projection P ∈
L(H) with Q ≤ P and ‖[P, Si]‖ < ε for 1 ≤ i ≤ n.

Condition (ii) or (iii) is frequently taken as the defini-
tion of a quasidiagonal set of operators.

Corollary. Let A be a concrete C*-algebra of opera-
tors on H, containing K(H). Then A is a quasidiago-
nal C*-algebra of operators if and only if there is an
approximate unit for K(H), consisting of projections,
which is quasicentral for A.



Quasidiagonal C*-Algebras

Definition. A C*-algebra is quasidiagonal if it has a

faithful representation as a quasidiagonal algebra of

operators.

If A is quasidiagonal, then any faithful representation

of A not intersecting K is quasidiagonal (Voiculescu’s

Weyl-von Neumann Theorem)

Theorem. A C*-algebra A is quasidiagonal if and

only if, for every x1, . . . , xn ∈ A and ε > 0, there is a

representation π of A on a Hilbert space H and a finite-

rank projection P ∈ L(H) with ‖Pπ(xj)P‖ > ‖xj‖ − ε
and ‖[P, π(xj)]‖ < ε for 1 ≤ j ≤ n.

Corollary. A separable C*-algebra A is quasidiagonal

if and only if there is a completely positive contraction

φ : A →
∏
Mkn, for some sequence 〈kn〉, with π ◦ φ :

A→ (
∏
Mkn)/(⊕Mkn) a *-homomorphism.



Quasidiagonal Extensions

A C*-algebra A has a quasidiagonal extension by K
if there is a quasidiagonal C*-algebra of operators B,

containing K, with B/K ∼= A.

A quasidiagonal C*-algebra has a split quasidiagonal

extension by K.

Corollary. A C*-algebra is quasidiagonal if and only

if it has a semisplit quasidiagonal extension by K.

Semisplit means completely positive cross section A→
B.

Proposition. A C*-algebra has a quasidiagonal ex-

tension by K if and only if it embeds in (
∏
Mkn)/⊕Mkn)

for some sequence 〈kn〉.

Corollary. A C*-algebra is an MF algebra if and only

if it has a quasidiagonal extension by K.



Nuclear C*-Algebras

There are many equivalent definitions. We will use:

Definition. A C*-algebra A is nuclear if the iden-

tity map on A can be approximated in the point-norm

topology by completely positive contractions through

finite-dimensional C*-algebras [matrix algebras], i.e.

given x1, . . . , xn ∈ A and ε > 0, there is a finite-

dimensional C*-algebra [matrix algebra] B and com-

pletely positive contractions α : A→ B and β : B → A

such that ‖xi − β ◦ α(xi)‖ < ε for 1 ≤ i ≤ n.

A
id−→ A

B



NF Algebras

Definition. A separable C*-algebra is an NF algebra

if it can be written as a generalized inductive limit

lim→(An, φm,n), with each An finite-dimensional and

φm,n a completely positive contraction.

Theorem. Let A be a separable C*-algebra. The

following are equivalent:

(i) A is an NF algebra

(ii) A is a nuclear MF algebra

(iii) A is nuclear and can be embedded as a C*-subalgebra

of (
∏
Mkn)/(⊕Mkn) for some sequence 〈kn〉

(iv) A is nuclear and quasidiagonal

(v) The identity map on A can be approximated in

the point-norm topology by completely positive

approximately multiplicative contractions through

finite-dimensional C*-algebras, i.e.



Given x1, . . . , xn ∈ A and ε > 0, there is a finite-
dimensional C*-algebra B and completely positive con-
tractions α : A→ B and β : B → A such that ‖xi − β ◦
α(xi)‖ < ε and ‖α(xixj)− α(xi)α(xj)‖ < ε for all i, j.

A
id−→ A

B

Thus the NF algebras form a very natural class of
nuclear C*-algebras, the ones in which not only the
complete order structure but also the multiplication
can be approximately modeled in finite-dimensional
C*-algebras.

A nuclear C*-subalgebra of an NF algebra is NF.

An inductive limit of NF algebras is NF.

If A is any nuclear C*-algebra, then CA and SA are
quasidiagonal (Voiculescu) and hence NF.

There is no known stably finite nuclear C*-algebra
which is not NF.



Cannot assume β is approximately multiplicative un-

less A is an AF algebra.

If B is a finite-dimensional C*-subalgebra of A, there

is a conditional expectation from A to B.

More generally, if φ : B → A is a complete order em-

bedding, there is an idempotent completely positive

contraction θ from A onto φ(B).

Nonstandard definition of AF algebras:

Definition. A C*-algebra is an AF algebra if, for any

x1, . . . , xn ∈ A and ε > 0, there is a finite-dimensional

C*-algebra B and completely positive contractions α :

A → B and β : B → A such that ‖xi − β ◦ α(xi)‖ < ε

and β is an injective *-homomorphism.

It follows that the α’s are automatically asymptotically

multiplicative in the sense of NF algebras.

Proposition. (Choi-Effros) Let A be a C*-algebra

and θ : A→ A an idempotent completely positive con-

traction. Then the product x · y = θ(xy) makes θ(A)

into a C*-algebra B, and θ|C∗(θ(A)) is a *-homomorphism.



Strong NF Algebras

Definition. A separable C*-algebra is a strong NF

algebra if it can be written as a generalized inductive

limit lim→(An, φm,n), with each An finite-dimensional

and φm,n a complete order embeddings.

There is then automatically an idempotent completely

positive contraction γn+1,n : An+1 → φn,n+1(An) for

each n, yielding an idempotent c.p. contraction A →
φn(An). These maps are asymptotically multiplicative.

AF ⇒ Strong NF ⇒ NF

The implications cannot be reversed.



Every commutative C*-algebra is a strong NF algebra.

A unital c.p. contraction from Cn to C is a convex

combination of homomorphisms.

A (unital) complete order embedding from Cn to Cm

gives a surjective affine map from ∆m−1 (or any sub-

complex) to ∆n−1.

A (unital) complete order embedding from Cn to C(X)

corresponds to a “triangulation” of X, i.e. a choice of

a partition of unity.

(λ1, . . . , λn) 7→
n∑

k=1

λkfk

A strong NF system for C(X) is equivalent to writing

X = lim←Xn, where the Xn are simplicial complexes

with increasingly fine triangulations, and the connect-

ing maps are piecewise linear.

Study of strong NF algebras is “noncommutative PL-

topology.”



Theorem. Let A be a separable C*-algebra. The
following are equivalent:

(i) A is a strong NF algebra

(ii) There is an increasing sequence (Sn) of finite-
dimensional *-subspaces of A, each completely or-
der isomorphic to a (finite-dimensional) C*-algebra,
with dense union

(iii) Given x1, . . . , xn ∈ A and ε > 0, there is a finite-
dimensional C*-algebra B, a complete order em-
bedding φ of B into A, and elements b1, . . . , bn ∈ B
with ‖xi − φ(bi)‖ < ε for 1 ≤ i ≤ n

(iv) The identity map on A can be approximated in the
point-norm topology by idempotent completely pos-
itive finite-rank contractions from A to A, i.e.
given x1, . . . , xn ∈ A and ε > 0, there is an idem-
potent completely positive finite-rank contraction
θ : A→ A with ‖xi − θ(xi)‖ < ε for 1 ≤ i ≤ n.

(v) The identity map on A can be approximated in the
point-norm topology by completely positive ap-
proximately multiplicative retractive contractions



through finite-dimensional C*-algebras, i.e. given
x1, . . . , xn ∈ A and ε > 0, there is a finite-dimensional
C*-algebra B and completely positive contractions
α : A→ B and β : B → A with α◦β = idB (β is then
automatically a complete order embedding), such
that ‖xi−β◦α(xi)‖ < ε and ‖α(xixj)−α(xi)α(xj)‖ <
ε for all i, j.

(vi) Same as (v) with the “approximately multiplica-
tive” condition on α deleted.

(vii) Given x1, . . . , xn ∈ A and ε > 0, there is a finite-
dimensional C*-algebra B and completely positive
contractions α : A → B and β : B → A with β

a complete order embedding, such that ‖xi − β ◦
α(xi)‖ < ε and ‖α(xixj) − α(xi)α(xj)‖ < ε for all
i, j.

(viii) Same as (vii) with the “approximately multiplica-
tive” condition on α deleted.

(ix) A is nuclear and inner quasidiagonal (has a sep-
arating family of quasidiagonal irreducible repre-
sentations.)



Thus not every NF algebra is strong NF:

Examples. C∗(S ⊕ S∗), S the unilateral shift

SO2

Every primitive NF algebra is strong NF. In particular,

every simple NF algebra is strong NF.

If A is NF and π is a faithful representation of infinite

multiplicity, then π(A) + K is strong NF. So every NF

algebra has a split extension by K which is strong NF.

In particular, every NF algebra embeds in a strong NF

algebra.

An inductive limit of strong NF algebras with injective

connecting maps is strong NF.

A generalized inductive limit of strong NF algebras

with complete order embeddings as connecting maps

is strong NF.



A residually finite-dimensional nuclear C*-algebra is

strong NF. Conversely:

Theorem. Every strong NF algebra is an (ordinary)

inductive limit of residually finite-dimensional C*-algebras.

Roughly: if A = lim→(An, φm,n) is a strong NF alge-

bra, then C∗(φm(Am)) is residually finite-dimensional.

But not obviously nuclear.

Instead, for each m inductively for n ≥ m define Cm,n ⊆
An by Cm,m = Am, Cm,n+1 = C∗(φn,n+1(Cm,n)), and

Cm = [∪φn(Cm,n)]− ⊆ A.

Cm = lim→(Cm,n, φm,n), so Cm is a strong NF algebra

and hence nuclear.

The map γn : A→ An is a *-homomorphism from Cm

onto Cm,n for each n, and these separate points, so

Cm is residually finite-dimensional. A = [∪Cm]−.



Open Questions

1. Is every stably finite nuclear C*-algebra an NF

algebra?

2. Can every (strong) NF algebra be embedded in an

AF algebra?

(Partial results by Dadarlat)

3. Is there an effective way to compute the K-theory

and trace space of a (strong) NF algebra?

“Noncommutative Čech cohomology”

4. Universal Coefficient Theorem?

Proposition. If every residually finite nuclear C*-

algebra satisfies the UCT (is in the bootstrap class),

then every nuclear C*-algebra is in the bootstrap class.

If A is nuclear, then S2A + K is strong NF and is

an inductive limit of residually finite-dimensional C*-

algebras Cn. A satisfies the UCT if all the Cn do.


