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C*-Algebras

Recall the definition of a C*-algebra:

Definition:

A C*-algebra is a complex Banach algebra A, with an involution *
satisfying

(x + y)∗ = x∗ + y∗ , (λx)∗ = λ̄x∗ , (xy)∗ = y∗x∗ , (x∗)∗ = x

for all x , y ∈ A, λ ∈ C, and satisfying the C*-axiom

‖x∗x‖ = ‖x‖2 for all x ∈ A .

The key point for our discussion is that the complex scalar
multiplication must be specified as part of the C*-algebra structure.

*-Homomorphisms between C*-algebras must respect the scalar
multiplication.
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The complex scalar multiplication is not quite implicit in the *-ring
structure of A, or in the structure of A as a real C*-algebra: there
are (at least) two possibilities.

If A is a C*-algebra, keep the addition, multiplication, involution,
and norm the same and conjugate the scalar multiplication:

λ · x = λ̄x .

A with this new scalar multiplication is a different C*-algebra,
called the conjugate C*-algebra of A, denoted Ac .

The identity map from A to Ac is a *-isomorphism of real
C*-algebras. But Ac need not be isomorphic to A as complex
C*-algebras.
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Choosing a complex scalar multiplication on a C*-algebra A can be
thought of as a choice of an orientation on A.

If A has central projections, there are more than two possibilities:
orientations can be chosen separately on direct summands.

Definition

A C*-algebra A is symmetric if A ∼= Ac (as complex C*-algebras).
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More familiar construction:

Keep the addition, involution, scalar multiplication, and norm on
A, and reverse the multiplication:

x · y = yx .

A with this structure is another C*-algebra, called the opposite
C*-algebra of A, denoted Aop.

Ac is isomorphic to Aop as a (complex) C*-algebra via x 7→ x∗,
hence is anti-isomorphic to A as a (complex) C*-algebra. A and
Aop are *-isomorphic as real C*-algebras via x 7→ x∗. But A and
Aop need not be isomorphic as (complex) C*-algebras (Connes,
Phillips, B.)

It is obvious that A 7→ Ac (or A 7→ Aop) is functorial, i.e. a
(complex-linear) *-homomorphism from A to B gives a
(complex-linear) *-homomorphism from Ac to Bc .
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Stable Homogeneous C*-Algebras

Stable homogeneous C*-algebras were classified by Dixmier and
Douady in the 1960s.

Ingredients: a base space X , assumed compact and metrizable for
simplicity
An element σ ∈ H3(X ), called the Dixmier-Douady invariant.

Theorem.

(i) To each such pair, a separable stable homogeneous C*-algebra
C ∗(X , σ) is associated. Every separable stable homogeneous
C*-algebra A with Prim(A) ∼= X is of this form.
(ii) C ∗(X , σ) ∼= C ∗(Y , τ) if and only if there is a homeomorphism
φ : X → Y with φ∗(τ) = σ.
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Simplest case: X is a closed connected orientable 3-manifold.
Then H3(X ) ∼= Z. The stable continuous trace C*-algebras over X
are thus of the form C ∗(X , n) for n ∈ Z.

C ∗(X , n) is symmetric if and only if there is a homeomorphism of
X which sends n to −n, i.e. an orientation-reversing
homeomorphism if n 6= 0.
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Lens Spaces

Regard S3 as the unit sphere in C2. Let p ∈ N, p ≥ 2, and
1 ≤ q ≤ p − 1 relatively prime to p. Define an action of Zp on S3

by letting the generator act by

(z ,w) 7→ (e2πi/pz , e2πiq/pw) .

This is a free action. Denote the quotient, which is a closed
connected oriented 3-manifold, by L(p, q). The usual orientation
on S3 induces a canonical orientation on L(p, q).

Lens spaces have been classified up to homeomorphism, homotopy
equivalence, oriented homeomorphism, and oriented homotopy
equivalence.
L(7, 2) and L(7, 3) are homeomorphic but not oriented
homeomorphic. Thus L(7, 2) has no orientation-reversing
homeomorphism.
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Thus, if X = L(7, 2) and n 6= 0 (say n = 1), then A = C ∗(X , n) is
not symmetric.

A standard iterative construction, obtained by taking
automorphisms (θn) of A induced by a minimal sequence (φn) of
automorphisms of X homotopic to the identity and successively
embedding A into M2(A) ∼= A by

x 7→ diag(x , θn(x))

a projectionless simple C*-algebra is obtained which is possibly not
symmetric.

More sophisticated versions of the construction yield more
promising examples.
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K-Theory

K∗(A) and K∗(Ac) (or K∗(Aop)) are naturally isomorphic since the
projections, unitaries, and partial isometries in Ac (and Aop) are
just the projections, unitaries, and partial isometries in A
respectively.

Thus K -theory (at least the K -groups) does not distinguish
between A and Ac : K -theory does not “see” the complex structure
of A.
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However, functional calculus depends on the scalar multiplication,
so is different in Ac than in A. The spectrum of an element x ∈ A
is also different in A and Ac in general. (Functional calculus and
spectrum are the same in A and Aop.)

As a result, if the complex scalar multiplication is conjugated, the
connecting maps in the six-term exact sequence of K -theory
change sign. So the complex scalar multiplication is subtly
encoded in K -theory in the signs of these terms.
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Bivariant K -Theory

There are many variations of bivariant K -theory:

KK -theory

E -theory

Cuntz’s general bivariant theories

In their abstract formulations and concrete realizations (using
Fredholm modules, asymptotic morphisms, etc.), the complex
structure is used, so it is natural to expect that these theories may
“see” the complex structure of the algebras.

Thus they may give finer structure invariants than ordinary
K -theory.
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Recall the definition of a (pre-)Hilbert B-module:

Definition

A pre-Hilbert B-module is a right B-module E which is compatibly
a complex vector space, equipped with a B-valued pre-inner
product 〈· , ·〉 : E × E → B with the following properties for
ξ, η, ζ ∈ E , b ∈ B, λ ∈ C:

(i) 〈ξ, η + ζ〉 = 〈ξ, η〉+ 〈ξ, ζ〉 and 〈ξ, λη〉 = λ〈ξ, η〉
(ii) 〈ξ, ηb〉 = 〈ξ, η〉b
(iii) 〈η, ξ〉 = 〈ξ, η〉∗

(iv) 〈ξ, ξ〉 ≥ 0 (as an element of B).

“Compatible” means:

(λξ)b = λ(ξb) = ξ(λb)

for all λ ∈ C, ξ ∈ E , b ∈ B.
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The compatible complex-linearity is perhaps underappreciated. If
this is weakened to real-linearity, the larger class of real
(pre-)Hilbert B-modules is obtained, and KK -theory using this
larger class of Hilbert modules is Kasparov’s real KK -theory KKR.

If E is a Hilbert B-module, the compatible scalar multiplication is
in a sense implicit, since if E is a right B-module with a complete
definite inner product satisfying (ii), (iii), (iv), and the first half of
(i), then there is a unique compatible scalar multiplication on E
defined by

λξ = lim ξ(λhi )

where (hi ) is an approximate unit for B.
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So even though the scalar multiplication on E is completely
determined by the scalar multiplication on B, it is an important
part of the structure of E . If we want to regard L(E) as a
C*-algebra, we must use the scalar multiplication on L(E) induced
by the scalar multiplication on E . A representation of a C*-algebra
as operators on E must respect this scalar multiplication.

If E is a Hilbert B-module, then E with the same addition, module
structure, and inner product, but with scalar multiplication
conjugated, is naturally a Hilbert Bc -module we denote Ec .
A T ∈ L(E) gives an adjointable operator on Ec , and the “identity
map” gives an identification of [L(E)]c with L(Ec).

We thus get a natural identification of KK (A,B) with KK (Ac ,Bc)
for any A and B, which is natural even at the level of Kasparov
modules. In particular, for any A and B, KK (Ac ,B) is naturally
isomorphic to KK (A,Bc).
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Main Question:

Does there exist a separable (nuclear) C*-algebra A which is not
KK -equivalent to Ac?

In other words: Does KK “see” the complex structure of A?

Alternate Formulation: A 7→ Ac gives an involution on the
category of separable C*-algebras and *-homomorphisms, and also
on the category KN whose objects are separable nuclear
C*-algebras and for which the morphisms from A to B are the
elements of KK (A,B), with composition via the Kasparov product.

On the full subcategory KKN with objects in the bootstrap class
N , this involution is “trivial” (preserves isomorphism classes).

Question:

Is this involution trivial on KN?
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The UCT Revisited

The general validity of the Universal Coefficient Theorem for
separable nuclear C*-algebras is the “elephant in the attic” in the
subject of Classification. Many results include validity of the UCT
as a hypothesis.

We will break down this question into several subquestions and
interpret the previous problems as a possible obstruction.
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The Universal Coefficient Theorem

Statement: For many pairs (A,B) of separable C*-algebras, there
is an exact sequence

0→ Ext1Z(K∗(A),K∗(B))
δ→ KK∗(A,B)

γ→ Hom(K∗(A),K∗(B))→ 0

The class N of all separable nuclear C*-algebras A for which this
sequence is valid for all separable C*-algebras B is called the
Bootstrap Class.
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Theorem (Rosenberg-Schochet):

The class N is precisely the smallest class of separable nuclear
C*-algebras containing C and closed under several standard
bootstrap operations. N is also precisely the class of separable
nuclear C*-algebras which are KK -equivalent to commutative
C*-algebras.

UCT Question:

Is N the class of all separable nuclear C*-algebras?
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Recall where the maps γ and δ come from:

For γ:
If x ∈ KK (A,B), then using the pairing

KK (C,A)× KK (A,B)→ KK (C,B)

and the isomorphism K0(D) ∼= KK (C,D), right Kasparov product
with x gives a homomorphism from K0(A) to K0(B).

Similarly, a map from K1(A) ∼= KK (SC,A) to
K1(B) ∼= KK (SC,B) is obtained.
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The δ is more indirect. There is a natural identification of
KK (A,B) with Ext(A,SB)−1, the group of invertible extensions of
A by SB ⊗K. Any such extension E defines a six-term cyclic exact
sequence

K0(SB) −−−−→ K0(E ) −−−−→ K0(A)

∂

x y∂
K1(A) ←−−−− K1(E ) ←−−−− K1(SB)

The connecting maps ∂ are exactly the maps induced by γ. If
x ∈ ker(γ) ⊆ KK (A,B), the connecting maps are 0, so the cyclic
exact sequence gives two short exact sequences

0→ K0(SB) ∼= K1(B)→ K0(E )→ K0(A)→ 0

0→ K1(SB) ∼= K0(B)→ K1(E )→ K1(A)→ 0
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Which define elements of Ext1Z(K0(A),K1(B)) and
Ext1Z(K1(A),K0(B)).

An element of KK 1(A,B) gives elements of Ext1Z(K0(A),K0(B))
and Ext1Z(K1(A),K1(B)).

Thus there is a degree one map κ from ker(γ) to
Ext1Z(K∗(A),K∗(B)). If A is in the bootstrap class, κ is a bijection
and δ is its inverse.
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So if A and B are separable C*-algebras, we have a diagram

0 −−−−−−→ ker(γ) −−−−−−→ KK∗(A, B)
γ−−−−−−→ image(γ) −−−−−−→ 0

κ

y yid

yι

Ext1Z(K∗(A),K∗(B)) KK∗(A, B)
γ−−−−−−→ Hom(K∗(A),K∗(B))

with the first row exact. The map ι is injective (by definition), but
κ is not obviously either injective or surjective.
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The UCT holds for a pair (A,B) if and only if all three of the
following are true:

The map ι is surjective (i.e. γ is surjective).

The map κ is injective.

The map κ is surjective.

Failure of surjectivity of either ι or κ means KK ∗(A,B) is “smaller
than the UCT would predict.”

Failure of injectivity of κ means KK ∗(A,B) is “larger than the
UCT would predict.”
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The map κ is surjective.
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So we can reduce the UCT to three questions. Let A and B be
separable C*-algebras, with A nuclear. (We usually ask these
questions for a fixed A, letting B vary.)

Question 1:

Is ι always surjective, i.e. is γ always surjective?

Question 2:

Is κ always injective?

Question 3:

Is κ always surjective?

These questions are not independent: for example, for a given A, if
(1) and (2) have positive answers for all B with K∗(B) divisible,
then all three have positive answers for all B
(Rosenberg-Schochet).
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A separable nuclear C*-algebra A for which A and Ac are not
KK -equivalent would be a counterexample to the UCT:

K∗(A) and K∗(Ac) are naturally isomorphic since the projections,
unitaries, and partial isometries in Ac are just the projections,
unitaries, and partial isometries in A respectively. Thus if ι is
surjective, there is an x ∈ KK (A,Ac) with γ(x) an isomorphism.

Proposition (Rosenberg-Schochet):

Let A and B be separable C*-algebras with A ∈ N . Let
x ∈ KK (A,B). If γ(x) ∈ Hom(K∗(A),K∗(B)) is an isomorphism,
then x is a KK -equivalence.

So if A ∈ N , then A and Ac (or Aop) are KK -equivalent.
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If A is a separable nuclear C*-algebra which is not KK -equivalent
to Ac , the Proposition shows that at least one of Questions (1) –
(3) has a negative answer for some pair (A,B). Which pair(s) and
which question(s)?

The first guess might be that Question (1) has a negative answer
(i.e. γ is not surjective) for (A,Ac), although this is not clear. In
fact, if there is a separable nuclear A with trivial K -theory which is
not KK -equivalent to Ac , then it must be that KK (A,A) is not 0,
i.e. κ is not injective for the pair (A,A).
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The proof of the Rosenberg-Schochet Proposition also shows:

Proposition:

Let A and B be separable C*-algebras such that the UCT sequence
holds for (A,A) and (A,B). Let x ∈ KK (B,A). If
γ(x) ∈ Hom(K∗(B),K∗(A)) is an isomorphism, then x is a
KK -equivalence.

Applying this to B = Ac , we obtain that if A is not KK -equivalent
to Ac , then at least one of the three questions has a negative
answer for either (A,A) or (A,Ac).
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Construction of a counterexample to the Main Question may be
difficult. If A = C ∗(X , n) with X = L(7, 2), then A is not
symmetric. But, like all Type I C*-algebras, this A is
KK -equivalent to Aop; there is a homotopy result about lens
spaces which “explains” this (L(7, 2) and L(7, 3) are oriented
homotopy equivalent).

No counterexample can be constructed simply with groups, or
more generally with C*-algebras which are the complexifications of
real C*-algebras. But perhaps a more sophisticated construction
involving cocycles could yield an example.
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A counterexample might be constructed as a crossed product by a
finite cyclic group, as in Connes’ factor examples. It is not known
whether the Bootstrap Class is closed under crossed products by
finite cyclic groups; in fact:

Theorem.

If N is closed under crossed products by Z2, then N is the class of
all separable nuclear C*-algebras.

It is also known that if N is closed under crossed products by T,
then it is the class of all separable nuclear C*-algebras.
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Real KK -Theory

Proposition:

Let A and B be separable (complex) C*-algebras. Then

KKR(A,B) ∼= KK (A,B)⊕ KK (Ac ,B)

In particular, if A is a separable complex C*-algebra, KKR(A,A) is
isomorphic to KK (A,A)⊕ KK (Ac ,A). KKR(A,A) is a Z2-graded
ring with KK (A,A) the degree 0 part. (This is a different grading
than the grading of KK ∗

R(A,A) by degrees, which is a Z8-grading
in the real case, although it collapses to a Z2-grading if A is
complex).
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If the UCT fails because there is a separable nuclear A which is not
KK -equivalent to Ac , it is conceivable that there could be a
substitute UCT involving real KK -theory, taking into account the
nontriviality of the involution on KN.

There is a UCT for real C*-algebras due to J. Boersema. However,
this sequence gives no additional information for complex
C*-algebras: if A and B are separable complex C*-algebras,
Boersema’s exact sequence applies only if A ∈ N , in which case it
essentially gives two copies of the Rosenberg-Schochet UCT
sequence.
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One last observation. If A is a separable C*-algebra, then
KK (A,A) is a ring. The set of finite sums of elements of KK (A,A)
which factor through Ac , i.e. are of the form xy for some
x ∈ KK (A,Ac) and y ∈ KK (Ac ,A), is an ideal in KK (A,A), which
is all of KK (A,A) if A and Ac are KK -equivalent.

What information does the quotient ring give?
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