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Origin: talks by S. Vaes, R. Vergnioux, T. Banica at Oberwolfach,
August 2005

If m, n ≥ 2, let Qmn be the universal C*-algebra generated by an
array

{qij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

of projections satisfying the array condition:
For each fixed i , or for each fixed j , the projections {qij} are
mutually orthogonal.
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For Qmn, the array condition is equivalent to:
The m × n matrix

B =


q11 · · · q1n

· · ·
· · ·
· · ·

qm1 · · · qmn


is a partial isometry (i.e. B∗B is a projection in Mn(Qmn) and
hence BB∗ is a projection in Mm(Qmn).)
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Let Qr
mn be the universal unital C*-algebra generated by an array

{qij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

of projections satisfying the array condition and the additional
condition

n∑
j=1

qij = 1

for each i .

Proposition.

If {qij} is an array of projections on a nontrivial Hilbert space
satisfying the relations in Qr

mn, then

(i) m ≤ n.

(ii) If m = n, then
n∑

i=1

qij = 1 for all j .
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Write As(n) for Qr
nn. As(n) is the universal unital C*-algebra

generated by an n× n array {qij} of projections satisfying the array
condition and such that each row and column sum to 1.

Equivalently: As(n) is the universal (necessarily unital) C*-algebra
generated by an n × n array {qij} of projections such that

B =


q11 · · · q1n

· · ·
· · ·
· · ·

qn1 · · · qnn


is a unitary (or just an isometry) in Mn(As(n)).
The As(n) were first introduced by S. Wang.

As(n) is finite-dimensional and commutative for n = 2, 3, and
infinite-dimensional and noncommutative for n ≥ 4 (discussed
later).
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Abelianization of As(n)

Let As(n)ab be the abelianization of As(n).

Theorem.

As(n)ab
∼= C (Sn) ∼= Cn!

Regard Sn as the set of n × n permutation matrices. C (Sn) has n!
minimal projections {pσ : σ ∈ Sn}. For each (i , j), set

pij =
∑
σij=1

pσ.

The map qij 7→ pij is an isomorphism from As(n)ab to C (Sn).
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Thus As(n) can be regarded as a “noncommutative symmetric
group.” It is, in fact, a compact quantum group, the universal
quantum group of quantum symmetries of {1, 2, . . . , n} (S. Wang).
The comultiplication is given by

µ : As(n)→ As(n)⊗ As(n)

µ(qij) =
n∑

k=1

qik ⊗ qkj

Remark: The above formula also gives a comultiplication on Qnn,
making Qnn into some sort of “quantum group,” which is
noncompact since Qnn is nonunital. The range of µ appears to be
“too small” to make Qnn a true quantum group. Although Qnn is
nonunital, the comultiplication is a homomorphism from Qnn into
Qnn ⊗ Qnn, not just into the multiplier algebra.
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Preliminary Observations

Qmn
∼= Qnm; so may assume m ≤ n (automatic for Qr

mn)

Any permutation of the rows or of the columns of the array gives
an automorphism of Qmn or of Qr

mn or As(n) (Sm × Sn acts as
automorphisms of Qmn etc.) Transpose also gives an
automorphism of Qnn or of As(n).
In particular, for any i , j , k , l , qij is conjugate to qkl under an
automorphism of Qmn (Qr

mn, As(n)).
But note that qij is not equivalent to qkl in Qmn (Qr

mn, As(n))
unless i = k and j = l (discussed later).
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Relations Between the Algebras

If m1 ≤ m and n1 ≤ n, the C*-subalgebra of Qmn generated by

{qij : 1 ≤ i ≤ m1, 1 ≤ j ≤ n1}

is called a subarray subalgebra of Qmn of size (m1, n1). Similarly
for As(n).

Proposition.

A subarray subalgebra B of Qmn of size (m1, n1) is isomorphic to
Qm1,n1 .
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There is an obvious homomorphism φ from Qm1,n1 onto B. There
is also a homomorphism ψ from Qmn to Qm1,n1 sending qij to qij if
1 ≤ i ≤ m1, 1 ≤ j ≤ n1 and sending qij to 0 if i > m1 ir j > n1.
ψ ◦ φ is the identity on Qm1,n1 .

So Qm1,n1 naturally embeds in Qmn, and there is a retraction from
Qmn onto Qm1,n1 .
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There is a similar homomorphism φ from Qmn onto a subarray
subalgebra of As(k) for k ≥ max(m, n), which is not injective in
general. There is a homomorphism ψ from As(n + m) onto Q̃mn

defined by 

q11 · · · q1n p1 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·

qm1 · · · qmn 0 · · · pm

r1 · · · 0 q11 · · · qm1

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · rn q1n · · · qmn



where pi = 1−
n∑

j=1

qij , rj = 1−
m∑

i=1

qij .
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Then ψ ◦ φ is the identity on Qmn, so φ : Qmn → As(m + n) is
injective.

Question:

What is the smallest k such that the map φ : Qmn → As(k) is
injective?

We have max(m + 2, n + 2) ≤ k ≤ m + n.
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There is no obvious embedding of As(m) into As(n) for m < n.
But there is a homomorphism from As(n) onto As(m) given by



q11 · · · q1m 0 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·

qm1 · · · qmm 0 · · · 0
0 · · · 0 1 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 · · · 0 0 · · · 1



and thus As(m) is a quotient of As(n) for m < n.
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Structure of Q22

Q22 is generated by 4 projections

{q11, q12, q21, q22}.

The relations are q11 ⊥ q12, q21 and q22 ⊥ q12, q21. There are no
relations between q11 and q22, or between q12 and q21.

Thus the positive elements q11 + q22 and q12 + q21 are orthogonal,
and Q22 is the direct sum of the hereditary C*-subalgebras they
generate. Each hereditary subalgebra is isomorphic to C ∗ C (the
universal C*-algebra generated by 2 projections).

So Q22 is infinite-dimensional and noncommutative, but
2-subhomogeneous. Q22 ⊆ Qmn for all m, n ≥ 2, so all Qmn are
infinite-dimensional and noncommutative. Since As(4) contains a
C*-subalgebra isomorphic to Q22, As(4) is also infinite-dimensional
and noncommutative. If n > 4, As(4) is a quotient of As(n), so
As(n) is also infinite-dimensional and noncommutative.
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Structure of As(4)

Banica: As(4) has many 4-dimensional representations, most of
which are irreducible. Specifically, there is a homomorphism ρ from
As(4) to C (SU(2),M4) which is “inner faithful.”

It should be possible to construct higher-dimensional irreducible
representations of As(4) by fusion, using the comultiplication.

It does at least seem plausible that every irreducible representation
of As(4) is finite-dimensional, so As(4) is Type I (CCR).
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Structure of Q23

Theorem.

Qmn is not exact unless m = n = 2. In particular, Q23 is not exact.

Lemma.

The C*-subalgebra of Q23 generated by {q11, q22, q13} is
isomorphic to the universal C*-algebra B generated by three
projections p, q, r with the relation p ⊥ r .

There is an obvious homomorphism φ from B to the
C*-subalgebra. There is also a homomorphism ψ : Q23 → B
sending q11 to p, q22 to q, q13 to r , and the other generators to 0;
ψ ◦ φ is the identity on B.
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Lemma.

There is a surjective homomorphism from B̃ to C ∗(Z3 ∗ Z2).

The map sends p and r to two of the spectral projections of the Z3

generator, and q to a spectral projection of the Z2 generator.

Since C ∗(F2) ⊆ C ∗(Z3 ∗ Z2), Q̃23 contains a C*-subalgebra with
C ∗(F2) as a quotient, and thus is not exact. So Q23 is not exact.
If m + n ≥ 5, then Q23 embeds in Qmn, so Qmn is not exact.
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Since Q23 ⊆ As(5), which is a quotient of As(n) for any n > 5, we
obtain:

Corollary.

As(n) is not exact for n ≥ 5.

Related result:

Theorem

(Banica). The discrete quantum group associated with As(n) for
n ≥ 5 is not amenable.

This is possibly a noncommutative version of the fact that Sn is
not solvable for n ≥ 5, and should mean that As(n) is not nuclear
for n ≥ 5.
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K-Theory

If the full free product C∗mn of mn copies of C is regarded as the
universal C*-algebra generated by mn projections, and the
finite-dimensional commutative C*-algebra Cmn is regarded as the
universal C*-algebra generated by mn mutually orthogonal
projections, there are natural homomorphisms

C∗mn φ−→ Qmn
ψ−→ Cmn.

Theorem.

The maps φ and ψ are stable homotopy equivalences. So Qmn is
KK -equivalent to the finite-dimensional commutative C*-algebra
Cmn.
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ψ ◦ φ : C∗mn → Cmn is a KK -equivalence (Cuntz). Examination of
Cuntz’s proof, checking that the array relations are satisfied at a
crucial point, shows that it applies verbatim to show that ψ is a
KK -equivalence, and in fact a stable homotopy equivalence.

Corollary.

K0(Qmn) ∼= Zmn as ordered groups, and

{[qij ] : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

are free generators of K0(Qmn)); the qij are minimal projections in
Qmn. Also, K1(Qmn) = 0.
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So, although Qmn is not exact unless m = n = 2, it is
K -theoretically tractable.

The K -theory of As(n) is (apparently) more difficult to compute.
We have only partial information. Consider the case n = 4.
The 16 elements {[qij ] : 1 ≤ i , j ≤ 4} in K0(As(4)) are not
independent; there are 3 (independent) relations from the equality
of the row sums, and 4 more (one redundant) relations from the
equality with the column sums. Thus the group they generate has
rank at most 10, generated by the 10 elements

{[qij ] : 1 ≤ i , j ≤ 3} ∪ {[q14]}.

A brute-force calculation shows that the images of these elements
in K0(As(4)ab) ∼= Z24 are linearly independent and generate a
direct summand. Thus they generate a subgroup of K0(As(n))
isomorphic to Z10 which is a direct summand. We may conjecture
that this is all of K0(As(4)).
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Similarly, the obvious subgroup of K0(As(n)) has n2 generators and
2n − 2 relations, so K0(As(n)) should have a direct summand of
rank

n2 − 2n + 2 = (n − 1)2 + 1.

This subgroup is the image of K0(Q̃n−1,n−1) under the natural
homomorphism corresponding to mapping Qn−1,n−1 onto a
subarray subalgebra.

Conjecture.

If n ≥ 4, then K0(As(n)) ∼= Zn2−2n+2 and K1(As(n)) = 0.

A note of caution, though: the formula is false for n = 3. It can be
argued that this is an exceptional case. The formula is true for
n = 2, which should also be an exceptional case.
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Semiprojectivity

Definition.

A separable C*-algebra A is semiprojective if, for any C*-algebra
B, increasing sequence 〈Jn〉 of (closed two-sided) ideals of B, with
J = [∪Jn]−, and *-homomorphism φ : A→ B/J, there is an n and
a *-homomorphism ψ : A→ B/Jn such that φ = π ◦ ψ, where
π : B/Jn → B/J is the natural quotient map.
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Proposition:

Q22 is semiprojective.

Proof: If {qij} are projections in B/J satisfying condition for Q22,
then c = q11 + q22 and d = q12 + q21 are orthogonal positive
elements in B/J. Lift these to orthogonal positive elements
a, b ∈ B by Loring or as follows: let y = c − d . Then y = y∗; let
x = x∗ be a preimage in B, and let a = x+, b = x−. Replace B by
aBa, etc., and lift q11 and q22; then replace B by bBb and lift q12

and q21.
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What about Q23 or more general Qmn?

For Q23, can partially lift any 5 of the generators with the right
relations, but hard to lift the last one.

If Q23 is semiprojective, it cannot be proved by simple sequential
lifting of the generators; the generators must be lifted
simultaneously in a subtle way.

Cause for optimism: same type of difficulties seem to arise in
trying to show directly that Om ⊗ On is semiprojective
(2 ≤ m, n ≤ ∞). But many, maybe all, of these are semiprojective.

What about As(n)? Easy to show: if Qnn is semiprojective, then
As(n) is semiprojective. Converse is unclear.
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